
1

DJA3D: RDBMS AND ORACLE

UNIT I

DATABASE CONCEPTS:

Database - purpose of Database systems - View of Data - Relational Databases - Database

Architecture - the relational Database model - Integrity rules - Relational Algebra.

UNIT II

DATABASE DESIGN:

Data modeling – functional dependency – Database design – Normal forms - Personal

databases – Client/ server databases – The SQL*PLUS Environment – SQL*PLUS commands.

UNIT III

Oracle Tables: Naming rules and conventions – Data types – Constraints – Creating Oracle

table – Displaying table information – Altering an existing table- Dropping a table – Renaming

a table – Truncating a table.

UNIT IV

Working with tables: DML statements – Arithmetic operations – Where clause sorting –

DEFINE command – Built in functions – Grouping data

 Multiple tables: Joins – Set operators – sub query.

UNIT V

 PL/SQL: Fundamentals – Block structure – Comments – Data types – Variable declaration –

Anchored declaration – Assignment operation – Bind variables – Substitution Variables –

Arithmetic operators- control structures - PL/SQL Cursors & Exceptions.

TEXT BOOK:
1. Database Systems Using Oracle – Second edition – Nilesh Shah – PHI 2007

Reference Books:
1. Database system concepts –Henry F.Korth.
 2. Oracle 9i Complete reference – Loney Koch – Tata Mc Graw Hill 2005.

2

LESSON-1

DATABASE CONCEPTS

DATABASE AN INTRODUCTION

A database is an electronic store of data. It is a repository that stores

information about different "things" and also contains relationships among

those different "things." Let us examine some of the basic terms used to describe

the structure of a database:

 A person, place, event, or item is called an entity.

 The facts describing an entity are known as data. For example, if you

were a registrar in a college, you would like to have all the

information about the students. Each student is an entity in such a

scenario.

 Each entity can be described by its characteristics, which are known

as attributes. For example, some of the likely attributes for a college

student are student identification number, last name, first name,

phone number, Social Security number, gender, birthdate, and so on.

 All the related entities are collected together to form an entity set. An

entity set is given a singular name. For example, the STUDENT

entity set contains data about students only. All related entities in the

STUDENT entity set are students. Similarly, a company keeps track

of all its employees in an entity set called EMPLOYEE. The

EMPLOYEE entity set does not contain information about the

company's customers, because it wouldn't make any sense.

 A database is a collection of entity sets. For example, a college's

database may include information about entities such as student,

faculty, course, term, course section, building, registration

information, and so on.

3

 The entities in a database are likely to interact with other entities. The

interactions between the entity sets are called relationships. The

interactions are described using active verbs. For example, a student

takes a course section (CRSSECTION), so the relationship between

STUDENT and CRSSEC¬TION is takes. A faculty member teaches

in a building, so the relationship between FACULTY and

BUILDING is teaches.

RELATIONSHIPS

The database design requires you to create entity sets, each describing a set of

related entities. The design also requires you to establish all the relationships

between the entity sets within the database. The different database management

software packages handle the creation and use of relationships in different manners.

Depending on the type of interaction, the relationships are classified into three

categories:

1.One-to-one relationship: A one-to-one relationship is written as 1:1 in short

form. It exists between two entity sets, X and Y, if an entity in entity set X has only

one matching entity in entity set Y, and vice versa. For example, a department in a

college has one chairperson, and a chairperson chairs one department in a college.

An employee manages one department in a company, and only one employee

manages a department.

2.One-to-many relationship: A one-to-many relationship is written as 1:M. It

exists between two entity sets, X and Y, if an entity in entity set X has many

matching entities in entity set Y but an entity in entity set Y has only one matching

entity in entity set X. In such a situation, a 1:M relationship exists between entity

sets X and Y. For example, a faculty teaches for one division in a college, but a

division has many faculty members. The relationshipbetween DIVISION and

FACULTY is 1:M. An employee works in a department, but a department has

many employees. The relationship between DEPARTMENT and EMPLOYEE is

1:M.

4

3. Many-to-many relationship: A many-to-many relationship is written as M:N

or M:M. It exists between two entity sets, X and Y, if an entity in entity set X has

many matching entities in entity set Y and an entity in entity set Y has many

matching entities in entity set X. For example, a student takes many courses, and

many students take a course. An employee works on many projects, and a project

has many employees.

DATABASE MANAGEMENT SYSTEM (DBMS)

The database system consists of the following components:

 • A database management System (DBMS) software package such as

Microsoft Access, Visual Fox Pro, Microsoft SQL-Server, or Oracle.

 • A user-developed and implemented database or databases that include

tables, a data dictionary, and other database objects.

 • Custom applications such as data-entry forms, reports, queries, blocks,

and programs.

 • Computer hardware personal computers, minicomputers, and

mainframes in a network environment.

 • Software—an operating system and a network operating system.

 • Personnel a database administrator, a database designer/analyst, a

programmer, and end users.

 Data are the raw materials. Information is processed, manipulated, collected,

or organized data. The information is produced when a user uses the applications to

User

5

Applications DBMS Database

OS Software

Hardware

Database system

transform data managed by the DBMS. The database system is utilized

as a decision-making system and is also referred to as an information

system (IS).

A DBMS based on the relational model is also known as a

Relational Database Management System (RDBMS). An RDBMS not

only manages data but is also responsible for other important

functions:

 It manages the data and relationships stored in the database. It

creates a Data Dictionary as a user creates a database. The Data

Dictionary is a system structure that stores Metadata (data about

data).The Metadata include table names, attribute names, data

types, physical space, relationships, and so on.

 It manages all day-to-day transactions.

 It performs bookkeeping duties, so the user has data

independence at the application level. The applications do not

have information about data characteristics.

 It transforms logical data requests to match physical data

structures. When a user requests data, the RDBMS searches

through the Data Dictionary, filters out unnecessary data, and

displays the results in a readable and understandable form.

6

 It allows users to specify validation rules. For example, if only M

and F are possible values for the attribute gender, users can set

validation rules to keep incorrect values from being accepted.

 It secures access through passwords, encryption, and restricted

user rights.

 It provides backup and recovery procedures for physical security

of data.

 It allows users to share data with data-locking capabilities.

 It provides import and export utilities to use data created in other

database or spreadsheet software or to use data in other software.

 It enables users to join tables to view information stored in

different tables within the database. The user is able to design a

database with less redundancy, which means fewer data-entry

errors, fewer data corrections, better data integrity, and a more

efficient database.

RELATIONAL DATABASE MODEL

The need for data is always present. hi the computer age, the need to

represent data in an easy-to-understand, logical form has led to many

different models, such as the relational model, the hierarchical model,

the network model, and the object model. Because of its simplicity in

design and ease in retrieval of data, the relational database model has

been very popular, especially in the personal computer environment.

E. F. Codd developed the relational database model in 1970. The

model is based on mathematical set theory, and it uses a relation as the

building block of the database. The relation is represented by a two-

dimensional, flat structure known as a table. The user does not have to

know the mathematical details or the physical aspects of the data, but

the user views the data in a logical, two-dimensional structure. The

7

database system that manages a relational database environment is

known as a Relational Database Management System (RDBMS).

Some of the popular relational database systems are Oracle9i by

Oracle Corporation, Microsoft Access 2000, and Microsoft Visual Fox

Pro 6.0.

A table is a matrix of rows and columns in which each row

represents an entity and each column represents an attribute. In other

words, a table represents an entity set as per database theory, and it

represents a relation as per relational database theory. In daily practice,

the terms table, relation, and entity set are used interchangeably.

INTEGRITY RULES

In any database managed by an RDBMS, it is very important that

the data in the underlying tables be consistent. If consistency is

compromised. the data are not usable. This need led the pioneers of

database field to formulate two integrity rules:

1. Entity integrity: No column in a primary key may be null. The

primarykey provides the means of uniquely identifying a row or an

entity. A nullvalue means a value that is not known, not entered, not

defined, or not applicable. A zero or a space is not considered to be a

null value. If the primary key value is a null value in a row, we do not

have enough informationabout the row to uniquely identify it. The

RDBMS software strictly follows the entity integrity rule and does not

allow users to enter a row without a unique value in the primary key

column.

2. Referential integrity: A foreign key value may be a null value,

or it mustexist as a value of a primary key in the referenced table.

Referential integrity is not fully supported by all commercially

available systems, but Oracle supports it religiously! Oracle does not

allow you to declare a foreign key if it does not exist as a primary key

8

in another table. It allows you to leave the foreign key column value as

a null. If a user enters a value in the foreign key column, Oracle cross-

references the referenced primary key column in the other table to

confirm the existence of such a value.

It is not a good practice to use null values in any non-primary key

columns, because this results in extra overhead on the system's part in

search operations. The programmers or query users have to add extra

measures to include or exclude rows with null values. In certain cases,

it is not possible to avoid null values. For example, an employee does

not have a middle initial, an employee is hired but does not have an

assigned department, or a student's major is undefined. In Oracle, a

default value can be assigned to a column, and a user does not have to

enter a value for that column.

THEORETICAL RELATIONAL LANGUAGES

E. F. Codd suggested two theoretical relational languages to use

with the relational model:

1. Relational algebra, a procedural language.

2. Relational calculus, a nonprocedural language.

Third-generation high-level compiler languages can be used to

manipulate data in a table, but they can only work with one row at a

time. In contrast, the relational languages can work on the entire table

or on a group of rows. The multiple-row

manipulation does not even need a looping structure! The relational

languages pro-vide more power with a very little coding. Codd

proposed these languages to embed them in other host languages for

more processing capability and more sophisticated application

development. In the database systems available today, nonprocedural

Structured Query Language (SQL) is used as a data-manipulation

9

sublanguage. The theoretical languages have provided the basis for

SQL.

Relational Algebra

Relational algebra is a procedural language, because the user

accomplishes desired results by using a set of operations in a sequence.

It uses set operations on tables to produce new resulting tables. These

resulting tables are then used for subsequent sequential operations. In

Oracle, all operation names are not actually used as programming

terms, and most of these operations do not create a new resulting table,

as shown in the following examples using relational algebra.

The nine operations used by relational algebra are:

1. Union.

2. Intersection.

3. Difference.

4. Projection.

5. Selection.

6. Product.

7. Assignment.

8. Join.

9. Division.

Union. The union of two tables results in retrieval of all rows that

are in one or both tables. The duplicate rows are eliminated from the

resulting table. The resulting table does not contain two rows with

identical data values. There is a basic requirement to perform a union

operation on two tables:

• Both tables must have the same degree.

• The domains of the corresponding columns in two tables must be

same.

10

Such tables are said to be union compatible. In mathematical set

theory, a union can be performed on any two sets, but in relational

algebra, a union can be performed only on union-compatible tables.

Intersection. The intersection of two tables produces a table with

rows that are in both tables. The two tables must be union compatible

to perform an intersection on them.

Difference. The difference of two tables produces a table with

rows that are present in the first table but not in the second table. The

difference can be performed on union-compatible tables only.

Projection. The projection operation allows us to create a table

based on desirable columns from all existing columns in a table. The

undesired columns are ignored. The projection operation returns the

"vertical slices" of a table. The projection is indicated by including the

table name and a list of desired columns:

Selection. The selection operation selects rows from a table

based on a condition or conditions. The conditional operators (=, <>,

>, >=, <, <=) and the logical operators (AND, OR, NOT) are used

along with columns and values to create conditions. The selection

operation returns "horizontal slices" from a table.

Product. A product of two tables is a combination everything

in both tables. It is also known as a Cartesian product. It can cause

huge results with big tables. If the first table has x rows and the second

table has y rows, the resulting product hasx • y rows. If the first table

has m columns and the second table has n columns, the resulting

product has m + n columns.

Assignment. This operation creates a new table from existing

tables. We have been doing it throughout all the other operations.

Assignment (=) gives us an ability to name new tables that are based

on other tables. Note that assignment is not an Oracle term.

11

For example,

TABLE_A = PROJ2002 U PROJ2003

TABLE_C = PRO12002 - PROJ2003

Join. The join is one of the most important operations because of its

ability to get related data from a number of tables. The join is based on

common set of values, which does not have to have the same name in

both tables but does have to have the same domain in both tables.

When a join is based on equality of value, it isknown as a natural

join. In Oracle, you will learn about the natural join, or equijoin. and

also about other types of joins, such as outer join, non equijoin, and

,self-join, that are based on the operators other than the equality

operator.

Division. The division operation is the most difficult operation to

comprehend. It is not as simple as division in mathematics. In

relational algebra, it identifies rows in one table that have a certain

relationship to all rows in another table. Let us consider the following

two tables.

12

LESSON -2

DATABASE DESIGN

DATA MODELING

A model is a simplified version of real-life, complex objects.

Databases are complex, and data modeling is a tool to represent the

various components and their relation-ships. The entity-relationship

(E-R) model is a very popular modeling tool among many such tools

available today. Many tools are available for data modeling with E-R.

All tools have some variations in representation of components. The E-

R model provides:

• An excellent communication tool.

• A simple graphical representation of data.

The E-R model uses E-R diagrams (ERD) for graphical representation

of the database components. An entity (or an entity set) is represented

by a rectangle. The name of the entity (set) is written within the

rectangle. Some tools prefer to use uppercase letters only for entities.

The name of an entity set is a singular noun. For example,

EMPLOYEE, CUSTOMER, and DEPARTMENT are singular entity

set names.

A line represents relationship between the two entities. The name of

the relationship is an active verb in lowercase letters. For example,

works; manages, and employs are active verbs. Passive verbs can be

used, but active verbs are preferable

.

13

The types of relationships (1:1, 1:M, and M:N) between entities are called conn-

ectivity or multiplicity. The connectivity is shown with vertical or angled lines next

to each entity, For example, an EMPLOYEE supervises a DEPARTMENT, and a

DEPARTMENT has one EMPLOYEE supervisor. A DIVISION contains many

FACULTY members, but a FACULTY works for one DIVISION. An INVOICE

contains many ITEMs, and an ITEM can be in more than one INVOICE.

Let us put everything together and represent these scenarios with the E-R dia-

gram that shows entities, relationships, and connectivity.

The relationship between two entities can be given using the lower and upper

limits. This information is called the cardinality. The cardinality is written next

to each entity in the form (n, m), where n is the minimum number and m is the

maximum number. For example, (1,1) next to EMPLOYEE means that an

employee can supervise a minimum of one and a maximum of one department.

Similarly, (1,1) next to DEPARTMENT says that one and only one employee

supervises the department. The value (1,N) means a minimum of one and a

maximum equal to any number. Some modern tools do not show cardinality in an

E-R diagram.

14

In reality, corporations set rules for the minimum and maximum values for

cardinality. A corporation may decide that a department must have a minimum of

10 employees and a maximum of 25 employees, which results in cardinality of

(10,25). A college decides that a computer-science course section must have at

minimum 5 students to recover the cost incurred and at maximum 35 students,

because the computer lab contains only 35 terminals. An employee can be part of

zero or more than one department, and an item may not be in any invoice! These

types of decisions are known as business rules.

the above E-R diagram with added cardinality. In real life, it is possible to

have an entity that is not related to another entity at all times. The relationship

becomes optional in such a case. In the example of a video rental store. a

customer can rent video movies. In this case. there are times when the customer

has not rented any movie, and there are times when the customer has rented one or

more movies. Similarly, there can be a movie in the database that is or is not rented

15

at a particular time.These are called optional relationships and are shown with a

small circle next to the optional entity. The optional relationship can occur in 1:1,

1:M, or M:N relationships, and it can occur on one or both sides of the

relationship.

In relational databases, many-to-many (M:N) relationships are allowed, but

they are not easy to implement. For example, an invoice has many items. and an

item can be in many invoices. Refer to the INVOICE and ITEM relationship . At

this point, you will he introduced to the relational schema, a graphical represen-

tation of tables, their column names, key components, and relations between the

primary key in one table and the foreign key in another. You will also see the

decomposition of an M:N relationship into two 1:M relationships. The

decomposition from M:N to 1:M involves a third entity, known as a composite

entity or an associative entity. The composite entity is created with the primary

key from both tables with M:N relationships.The new entity has a composite key,

which is a combination of primary keys from the original two entities. In the E-R

diagram. a composite entity is drawn as a diamond within a rectangle. The

composite

16

entity has a composite primary key with two columns, each of them being

foreign keys referencing the other two entities in the database. For example, the

foreign key INVOICENO in the INVITEM table references the INVOICENO

column in the INVOICE table, and the foreign key ITEMNO in the INVITEM

table references the ITEMNO column in the ITEM table.

In a database, there are entities that cannot exist by themselves. Such

entities are known as weak entities. you will be introduced to two different

sample databases. In the employee database of that chapter, there is an entity

called EMPLOYEE with employees' demographic information and another

entity called DEPENDENT with information about each employee's dependents.

The DEPEN-DENT entity cannot exist by itself. There are no dependents for an

employee who does not exist. In other words, you need the existence of an

employee for his or her dependent to exist in the database. The weak entities are

shown by double-lined rec-tangles

Some of the other elements considered in the database design are:

• Simple attributes—attributes that cannot be subdivided; for

example, last name, city, or gender.

• Composite attributes—attributes that can be subdivided, into

atomic form; for example, a full name can be subdivided into the last name, first

name, and middle initial.

Weak Entity

17

• Single-valued attributes—attributes with a single value; for

example, Employee ID, Social Security number, or date of birth.

• Multivalued attributes—attributes with multiple values; for

example, degree codes or course registration. The multivalued attributes have to

be given special consideration. They can be entered into one attribute with a

value separator mark, or they can be entered in separate attributes with names

like Coursel, Course2, Course3, and so on. Alternatively, a separate, composite

entity can be created.

DEPENDENCY

In Chapter 1, you learned that the primary key in a table identifies an

entity. Every table in the database should have a primary key, which uniquely

identifies an entity. For example, PartNo is a primary key in the PARTS table,

and DeptNo is a primary key in the DEPARTMENT table. In Oracle, if you

create a table and do not defineits primary key. Oracle does not consider it to be

an error. You should define a primary key for all tables for integrity of data.

Each table has other columns that do not make up the primary key for the table.

Such columns are called the nonkey columns. The nonkey columns are

functionally dependent on the primary key column. For example, PartDesc and

Cost in the PARTS table are dependent on the primary key PartNo, and

DeptName is dependent on the primary key DeptNo in the DEPARTMENT

table.

Now, let us take a scenario as shown below. The INVOICE table in does

not have any single column that can uniquely identify an entity. The first choice

would be InvNo. It is not a unique value in the table, however, because an

invoice may contain more than one item and there may be more than one entry

for an invoice. CustNo cannot be the primary key, because there can be many

invoices for a customer and CustNo does not identify an invoice. ItemNo cannot

be the primary key either, because an item may appear in more than one invoice

18

and ItemNo does not describe an invoice. The table has a composite primary

key, which consists of InvNo and ItemNo. InvNo and ItemNo together make up

unique values for each row. All other columns that do not constitute the primary

key are nonkey columns, and they are dependent on the primary key.

INVOICE

Inv No InvDate CustN

o

ItemNo CustName ItemName ItemPrice Qty

1001 04/14/03 212 1 Starks Screw $2.25 5

1001 04/14/03 212 3 Starks Bolt S3.99 5

1001 04/14/03 212 5 Starks Washer $1.99 9

1002 04/17/03 225 1 Connors Screw $2.25 2

1002 04/17/03 225 2 Connors Nut $5.00 3

1003 04/17/03 239 1 Kapur Screw $2.25 7

1003 04/17/03 239 2 Kapur Nut $5.00 1

1004 04/18/03 211 4 Garcia Hammer $9.99 5

INVOICE table and its columns.

There are three types of dependencies in a table:

1. Total or full dependency: A nonkey column dependent on all primary

key columns shows total dependency.

2. Partial dependency: In partial dependency, a nonkey column is

dependent on part of the primary key.

3. Transitive dependency: In transitive dependency, a nonkey column is

dependent on another nonkey column.

For example, in the INVOICE table, ItemName and ItemPrice are

nonkey columns that are dependent only on a part of the primary key column

ItemNo. Theyare not dependent on the InvNo column. Similarly, the nonkey

19

column InvDate is dependent only on InvN o. They are partially dependent on the

primary key columns. The nonkey column CustName is not dependent on any

primary key column but is dependent on another nonkey column, CustNo. It is

said to have transitive dependency. The nonkey column Qty is dependent on both

InvNo and ItemNo, so it is said to have full dependency.

DATABASE DESIGN

 Relational database design involves an attempt to synthesize the

database structure to get the "first draft." The initial draft goes through an analysis

phase to improve the structure. More formal techniques are available for the

analysis and improvement of the structure. In the synthesis phase, entities and

their relationships are identified. The characteristics or the columns of all entities

are also identified, and the designer defines the domains for each column. The

candidate keys are picked, and primary keys are selected from them. The minimal

set of columns is used as a primary key. If one column is sufficient to uniquely

identify art entity, there is no need to select two columns to create a composite

key. Avoid using names as primary keys, and break down composite columns into

separate columns. For example, a name should be split into last name and first

name. Once entities, columns, domains, and keys are defined, each entity is

synthesized by creating a table for it. A process called normalization analyzes

tables created by the synthesis process.

NORMAL FORMS

 data are repeated from row to row. For example, InvDate, CustNo,

and CustName are repeated for same InvNo. The ItemName is entered repeatedly

from invoice to invoice. There is a large amount of redundant data in a table with

just eight rows! Redundant data can pose a huge problem in databases. First of

all, someone has to enter the same data repeatedly. Second, if a change is made in

one piece of the data, the change has to be made in many places. For example, if

customer Starks changes his or her name to Starks-Johnson, you would go to the

20

individual row in INVOICE and make that change. The redundancy may also lead

to anomalies.

Anomalies

 A deletion anomaly results when the deletion of information about

one entity leads to the deletion of information about another entity. For example,

if an invoice for customer Garcia is removed, information about item number 4 is

also deleted. An insertion anomaly occurs when the information about an entity

cannot be inserted unless the information about another entity is known. For

example, if the company buys a new item, this information cannot be entered

unless an invoiceis created for a customer with that new item. An update anomaly

can occur if the item price changes to a new price. The price change is valid after

the change date, but not before the change date.

 Unnecessary and unwanted redundancy and anomalies are not

appropriate in databases. Such tables are in lower normal form. Normalization is a

technique to re-duce redundancy. It is a decomposition process to split tables. The

splitting is per-formed carefully so that no information is lost. The higher the

normal form is, the lower the redundancy. The table in is in first normal form

(INF).

First Normal Form (INF)

A table is said to be in first normal form, or can be labeled INF, if the following

conditions exist:

 The primary key is defined. This includes a composite key if a single

column cannot be used as a primary key. In our INVOICE table, InvNo and

ItemId are defined as the composite primary key components.

 All nonkey columns show functional dependency on the primary key

components. If you know the invoice number and the item number, you can

find out the invoice date, customer number and name, item name and price,

and quantity ordered. For example, if InvNo = 1001 and ItemNo = 5 are

21

known, then InvDate = 04114/03. ItemName = Washer, ItemPrice = $1.99,

CustNo = 212. and CustName = Starks.

 The table contains no multivalued columns. In a single-valued column, the

intersection of a row and a column returns only one value. In a normalized

table, the intersection of a row and a column is a single value. Some

database packages, such as Unidata and Prime Information, allow multiple

values in a column in a row, but Oracle does not. Fthe INVOICE table of

in unnormalized form. The ItemNo, ItemName, ItemPrice, and Qty

columns are multivalued.

 A table that is in INF may have redundant data. A table in 1NF does

not show data consistency and integrity in the long run. The normalization

technique is used to control and reduce redundancy and to bring the table to a

higher normal form.

Second Normal Form (2NF)

A table is said to be in second normal form, or 2NF, if the following

requirements are satisfied:

•All INF requirements are fulfilled.

•There is no partial dependency.

 As you already know, partial dependency exists in a table in which

nonkey columns are partially dependent on part of a composite key. Suppose a

table is in 1NF and does not have a composite key. Is it in the second normal form

also? Yes, it is in 2NF, because there is no partial dependency. Partial dependency

only exists in a table with a composite key.

Third Normal Form (3NF)

A table is said to be in third normal form, or 3NF, if the following

requirements are satisfied:

•All 2NF requirements are fulfilled.

•There is no transitive dependency.

22

A table that has transitive dependency is not in 3NF, but it needs to be

decomposed further to achieve 3NF. However, a table in 2NF that does not

contain any transitive dependency does not need any further decomposition and is

automatically in 3NF.

Other, higher normal forms are defined in some database texts. Boyce-Codd

normal form (BCNF), fourth normal form (4NF), fifth normal form (5NF), and

do-main key normal form (DKNF) are not covered in this text. In the following

section, you will learn the normalization process by using dependency diagrams.

23

LESSON-3

SQL

Structured Query Language (SQL)

SQL is a Structured Query Language and is the industry standard language to

define and manipulate the data in. Relational Database Management" System. In a

database environment, the interactions between the Client and the Server are only

through SQL. This one-point communication language.in Client-Server architecture

facilitates the data base, connectivity and processing

Structured Query Language is a simple English-like language SQL is also.

pronounced as . ―sequel" and consists of layers. of increasing complexity and

capability. End-users with little orno experience in data processing can learn SQL

features very quickly. It is a Fourth Generation Language.

SQL was first introduced by IBM Research and was introduced into the

commercial market first by Oracle Corporation in 1979. A committee at the

American National,StandardsInstitute hasendorsed SQL as the standard language for

RDBMS.

SQL Provides the following functionalities :

 Creation of tables.

 Querying the exact data.

 Change the data structure and the data.

 Combine and calculate the data to get required information.

Non Procedural Language

SQL is a non-procedural language and is free of logic and,procedural

constructs. In SQL, all we need to say is what we want and not how to go about it. It

aces not require,the.user to specify the methodology for accessing the data.SQL

processes of records rather than one atatime. SQL language can be used by Database

Administrators application programmers decision support personnel and management.

24

SQL facilitates interaction by embeddingSQL Standard programming languages

such as COBOL, FORTRAN, C etc. through a variety of RDBMS tools like

SQL * Plus, Report Generators, Duplication Generators, Form Generators.

Database Access through SQL

SOL operates over database tables. Tables constitute tabular representation of

data withdata residing in the form of a spreadsheet or rows and columns. Each row

has a set of data items and the kerns are called fields.

SQL * Plus

SQL Queries are sent to the Oracle RDBMS using the tool called SQL * Plus. This

isthe principal CLIENTtool for ORACLE. It is an environment through which any

interaction with the database is done using SQL commands.

SQL * Plus program can be used in conjunction with the SQL database language

and its procedural language extension FL/SQL. SQL * Plus enables theuser to

manipulate SQL commands and PL/SQL statements and to perform additional tasks

such as to

 Enter, edit, store, retrieve and run SQL commands

 Format and print calculations, query results in the form of reports.

 List column definitions for any table

 Access and copy data between SQL databases.

Logging to Oracle

TO enter into Oracle and interact with the database usingSQI. * Plus, a usemame

and a password must be given. Logging to oracle can be done by using either the

menu option or by entering.

Plus 80w (From Oracle 8) in the Start - Run Option.

It prompts the user to enter a username and a password. If the system is

connected to multi-user environment, the database alias name must be provided in the

"Host String".

The Database Administrator configures this database alias name.

25

The figure explains this :

Shortcuts to starting SQL * Plus

While starting SQL * Plus, the username along with the password and the

database alias (if required) can be given. The username and the password must be

separated by a slash (/). For example consider a user called SCOTT and the password

called TIGER.

If the user is connected to the personal database, SQL * Plus can be started by giving.

PLUS SOW SCOTT/TIGER (or) SQL PLUS SCOTT / TIGER

If the user is connected to a network, SQL * Plus can be started by

giving PLUS SOW SCOTT/TIGER @ ORACLE

After this, the SQL prompt appears from where the commands can be entered

and executed.

SQL Buffer

The area where SQL * Plus stores the most recently typed SQL commands or

PL/SQL commands is called SQL Buffer. The command remains in the buffer until

another command is entered. Thus, if the same command or block has to be re-

executed or edited, it can be done without retyping the same. A detailed list of SQL *

Plus commands are dealt later.

26

Note : SQL * Plus commands are not stored in the SQL Buffer and hence may not be re-

run.

SQL Command Classification

Based on the type of action that each command performs, SQL commands can be broadly

classified as follows:

Classifications Description Commands

DDL

(Date Definition Language)

DML

(Data Manipulation

Language)

DCL

(Data Control Language)

TCL

(TransactonControl

Language)

Queries

Is used to define the structure

of a table, or modify the

structure Is used to

manipulate with the data

Is used to restrict or grant

access to tables

Is used to restrict or grant

access to tables

Is used to complete fully or

undo the transactions

Is used to select records from

the tables or other objects

CREATE ALTER DROP,

TRUNCATE, RENAME

INSERT, UPDATE,

DELETE

GRANT, REVOKE

COMMIT, SAVEPOINT,

ROLLBACK

SELECT

Before discussing about creating tables, a detail description about data types is dealt with

Data types

Each literal or column value manipulated by Oracle has a datatype. A value's datatype

associates a fixed set of properties with the Value. Broadly classifying the datatypes, they can be

of two types :

 BUILT-IN

 USER — DEFINED (dealt in a later Chapter)

27

Built-in datatypes are predefined set of data types set in Oracle. Based on the

type of data that can be stored, built-in datatypes pan be classified as

 Character Datatypes

 Numeric Datatype

 Date Datatype

 0Raw Datatype

 Long Raw Datatype

 Lob Datatype

Character Datatype

Char (n)

Char datatype is a fixed length character data of length n bytes.

Default size is 1 byte and it can hold a maximum of 2000 bytes. Character datatypes pad

blank spaces to the fixedlength if the user enters a value lesser. than the specified length.

Syntax

Char (n)

Example :

X char (4) stores upto 4 characters of data in the column X.

Varchar 2 (size)

Varchar 2 datatype are variable length character strings. They can store alpha-numeric

values and the size must be specified. The maximum length of varchar 2 datatype is 4000 bytes.

Unlike char datatype, blank spaces are not padded to the length of the string. So, this is more

preferred than &erecter datatypes since it does not store the maximum length.

Syntax

Varchar 2 (size)

Example :

X varchar2 (10) stores upto 10 characters of data in the column X.

Numeric datatypes

Number

28

The number datatypes can store numeric values where p stands for the precision and

stands for the scale. The precision can range between 1 to 38 and the scale ranges from - 84 to

127.

Syntax

Number (p, s)

Example :

Sal number — Here the scale is 0 and the precision is 38.

Sal number(7) — Here the scale is. 0 and the number is a fixed point number of 7

digits

Sal number (7,3) — Stores 5 digits followed by 2 decimal points.

DATA datatype

Date datatype is used to store date and time values. The default formatis DD-MON-YY.

The valid data for a data ranges from January 1,4712 BC to December 31,4712 AD. Date

datatype stores 7 bytes one each for century, year, month, day, hour, minute and second.

RAW Datatype

RAW (n)

RAW datatype stores binary data of length n bytes. The maximum size is 255 bytes.

Specifying the size is a must for this datatype.

Syntax

Raw (n)

LONG Datatype

Stores character data of variable length upto 2 Gigabytes (GB) or 2
31

-1

LONG RAW Datatype

stores unto 2 Gigabytes (GB) of raw binary data. The use of LONG Values

are restricted.

The restrictions are :

 A Table cannot contain more than one LONG column.

29

 LONG columns cannot appear in Integrity constraints (dealt later)

 They cannot appear in WHERE, ORDER BY clauses of

SELECT statements

 Cannot be a part of expressions or conditions.

 Cannotappearin the SELECT list of CREATE TABLE as SELECT.

LOB Datatypes

In addition to the above datatypes, Oracle8 supports LOB datatypes. LOB is the

acronym for LARGE OBJECTS. The LOB datatypes stores upto 4 GB of data. This

datatype is used for storing video clippings, large images, history documents etc..

Create, View, Manipulate data

Data Creation through SQL

This section deals with creation of tables, altering its structure, inserting and

retrieving records and querying complex data using SQL

Using the CREATE TABLE- Command

Oracle Database is made up of tables that contain rows (horizontal) and

contains (vertical). Each column contains a data value at the intersection of A row and a

column the table definition contains the name of the attribute (property of field).and the

type of the data that the column contains To create a table, use CREATE TABLE

command. CREATE Command is used to define the structure of a table or any object.

Syntax:

CREATE TABLE <table name.> (column 1 datatype, column 2 datatype....c.);

Here, tablename refers. to the name of the table or entity, column Hi the name

the-first column, column2 the name of the second column and so on. For each column

there must beanappropriate data type which describes the type of data it can hold: The

statement terminatedby a semi-colon.

30

The following example illustratesthe Creation of a table:

Example

Create table EMPLOYEE (Empno NUMBER

Empname CHAR (10),

Doj DATE

 This would display

Table created

In the above example, an entity called EMPLOYEE is created. It contains

columnsEmp to that can hold numeric data, Empname that contains character data
-
andDoj

that containsthe type of data. Table names are case-insensitive.

The structure of the data would look like.

Name

EMPNO NUMBER

EMPNAME CHAR(10)

DOJ DATE

While creating tables, consider the following points

 Tablename must start with alphabet

 Tablename length must not exceed 30 characters

 No two tables can have the, same name

 Reserved words of Oracle are not allowed.

Viewing the Table structure

After creating the table, viewing the structure can be done using

DESCRIBEfollowed bythe name of the table.

Syntax:

DESC [rile] <tablename>

Example:

DESC EMPLOYEE

31

The output would look like

Name Type

EMPNO NUMBER

EMPNAME CHAR (10)

DOJ DATE

Using the ALTER TABLE Command

A table's structure can be altered using the ALTER Command.The Command allows the

structure of the existing table to be altered by adding new columns or fields dynamically

and modifying the existing fields datatypes. Using this command, one or more

columns can be added.

Syntax:

Alter table <tablename> add (columnl datatype, Column 2 datatype

Alter table<tablename>modify (column 1 datatype. column 2 datatype)

Example :

Consider the previous example where a new column called Salary is to be

added.ALTER TABLE employee ADD (salary NUMBER).

Using INSERT command

Insert command is used to add one or more rows to a table. The values are

separated commas and the values are entered in the same ORDER as specified by the

structure of the table. Insertingrecords into tables can be done in different ways:

 Inserting records into all fields

 Inserting records into selective fields

 . Continuous Insertions.

 Inserting records using SELECT statement.

Case 1:

Consider inserting records onto all the fields in the table.

Syntax:

32

Insert into <tablename> Values (valuel, value 2, value 3..);

Here, the number of values must correspond to the number of columns in the

table.

Example :

INSERT INTO EmployeeVALUES (1237,‘Kalai‘,10 MAR-2000, 5000);

The messagedisplayed will be:
.

I row created.

This command inserts the record Where the employee number is 1000, his name is

Jack and so on.Always character data must be entered within single quotes.

In theabove example, the column calleddoj contains a date datatype while inserting

data values, the values must be enclosed within quotes. The standard format of entering the

date values is DD-MON-YY'.

Note : Any value other than mere number must be placed within single quotes.

Otherwise, it treats the value as a column name.

Case 2:

Consider inserting values intoSelective fields.

Syntax:

Insert into <tablename> (Selective column1, selective column2) values (value 1,

value 2)

Example:

INSERT INTO Employee (empno, empname) VALUES (1330,

‗Saravanan‘);

Displays the feedback as

I row created:

Case 3:

Consider continuous insertion of records. In order to insert continuously, use "&"

(ampersand).

33

Syntax :

Insert into <tablename> Values (&Coll, &Co12, &Co13...);

Oracle prompts the user to insert values onto all the columns of the table. The following

example illustrates this..

Example

INSERT INTO employee VALUES (&eno, &name, &doj, &sal);

Output will be:

Enter value: for eno: 1247

Enter valuefor name: Mena

Enter value for doj name:10-jan-2000

Enter value for sal : 5000

old I: insert into employee values (&eno, ‗&name‘, &doj, &sal)

new I : insert into employee values (1247, 'meena', 10-jan-2000', 5000)

I row created.

Here, instead of enclosing the character values. in Quotes each time. it is

enough if it is given while using the Insert command. Now the same command can

be re-executed by giving /(slash) as long as this. is the latest command that is there

in the buffer.

Now, consider inserting_ records continuously for selective fields. This is similar to

case 2 Insert into <tablename> (selective column l, selective column2) Values

(Coll, &co12);

The following example inserts records into the empno and empname columns.

Example :

INSERT INTO Employee(empno, empname) VALUES (&eno, '&name‘);

Output

Enter value for eno : 1440

Enter value for name : Diana

34

old I: insert into employee values (&eno, ‗&name‘);

new I: insert into employee values (1440,‗Diana‘);

I row created.

Case 4:

Multiple Records can be inserted using a single Insert cornmand along with

Select statement. This case is dealt alter the section on Select Statement.

Note : Using Insert and Values combination, only one record can be inserted

at a time.

Retrieving Records — Using the. SELECT Statement.

Retrieving data from the database is the most common SQL operation. A

database retrieval is called a query and is performed using SELECT statement.

A basic SELECT statement contains two clauses or parts

Select some data (columnname (s)) FROM a table or More tables (table

name(s)) Retrieval of records can be done in various ways:

 Selecting all records from a table

 Retrieving selective columns for all records from a table

 Selecting records based on conditions

 Selecting records in a sorted order

Consider the first case of selecting all the records from the table.

Example

SELECT empno, empname, doj, salary FROM employee;

Here, all the column names are given in the SELECT clause. This can be

further simplified by giving ‗*‘ as follows:

Example

 SELECT * FROM employee;

This would display:

EMPNO EMPNAME DOJ SALARY

1237 Kalai 10-MAR-2000 5000

35

1330 Saravanan

1247 Meena 10-JAN-2000 5000

1440 Diana

‗*‘ INDICATED ALL THE COLUMN NAMES.

Note in the above display, there are no values entered in DOJ and Salary Column for

the employee 1001 and 1004. Here the values in these columns are considered to have NULL

values. Anytime it can be updated using the Update Command.

 In the second case, the column names must be specified in the SELECT statement.

Syntax :

SELECT Col1, Col2.,

FROM<tablename>;Example:

SELECT empname, salary FROM employee;

The records would be displayed as follows :

EMPNAME SALARY

Kalai 5000

Saravanan

Meena 5000

Diana

This statement retrieves the column values of empname and salary.

Conditional Retrieval

Conditional retrieval enables selective rows to be selected. While selecting rows,

restriction can be applied through a condition that governs the selection. An additional clause

called WHERE must be given along with the SELECT statement to apply the condition to select

a specific set of rows! The order of precedence first goes to the WHERE clause and the records

that match the condition are alone selected.

Syntax:

Select (column name (s)) FROM (table name(s)) WHERE condition(s)

36

Consider selecting employee records whose salary is equal to or greater than 3000. The query

can be -written as.

Example:

SELECT empno, empname, salary FROM employee where salary >=3000;

The records selected Will be,

EMPNO EMPNAME SALARY

1237 Kalai 5000

1247 Meena 5000

Example :

SELECT * FROM employee WHERE salary = 1000;

The display would be no rows selected since there are no records matching, the

condition specified in the WHERE clause.

Retrieving Records in a sorted order

Records selected can be displayed either in ascending order or in descending order based

on the column specified. ORDER BY clause is used to perform this operation,

Syntax :

Select (column narne(s));

FROM (table name(s)) WHERE 6onclitia!i(s)

ORDER BY <column name(s)>

Example :

SELECT * FROM employee ORDER By empname;

This would display

EMPNO EMPNAME DOJ SALARY

. 1440 Diana

1237 Kalai 10-MAR-2000 5000

1247 Meena 10-JAN-2000 5000

1330 Saravanan

There is a difference in the display. This query displays all the records in the employee.

37

table sorted in ascending order of the employee name. By default ascending is the order in

which the records are displayed. If the records need to be displayed in descending, use DESC

along with the Column name. For example,

SELECT * FROM employee ORDER BY empname DESC; . .

Here sorting is done. In descending order. So the display will be totally, different as

shown below

EMPNO EMPNAME DOJ

SALAR

Y
1440 Saravanan

1247 Meena 10-JAN-2000 5000

1237 Kalai 16-MAR-2000 5000

5000 1330 Diana

Sorting records can be done on more than one column. In this case, sortingis

done on the first column and then within that sorting is done on the second Column.

The following example illustrates this.

suppose mat sorting is to ne done on me salary column is ascending order and then

ilk that on the empname column in descending order.

SELECT tempo, empname, salary FROM employee ORDER. BY. salary, empname

DE S C;

This stores first thesalary and within that the employee name which would look here:

EMP NO EMPNAME SALARY

1247 Meena 5000

1237 KALAI 5000.

1440 Saravanan

1330 Diana

Note : DESC denotes descending order and this is not the same as DESC in SQL*

Plus. Copying the Structure with Records.

If theStructure of one table has to be copied on to another table along with the

records, the Create table statement is used in combination with the select statement. The

structure mg with the records is copied on to the second table.

Syntax:

38

CREATE TABLE <tablename2>AS SELECT <colurnnlist> FROM

<tablename1> where <conditions>]

Example:

Consider creating a table called employee1 whose structure is the same as employee

table. To create this use.

CREATE TABLE employee1 ASSELECT * FROM EMPLOYEE,

Displays the feedback;

Table created.

The structure of the employee 1 would be the same as the structure of employee

table.The records will also be the same. To view the records of employer table, use

SELECT * FROM employee1;

This would display

EMPNO EMPNAME DOJ SALARY

1237 Kalai 10-Mar-2000 5000

1330 Saravanan

1247 Meena 10-JAN-2000 5000

1440 Diana

If only specific columns need to be copied use;

CREATE TALE employee2 AS SELECT empno, empname FROM EMPLOYEE;

The statements given above create new tables called employee 1 andemployees2

respectively. In the case of employee' table, the structure, which exists in the employeetable,

is copied and the records are inserted. In the case of employee2 table, two columns are copied

fromthe employee name with the records and me structure. The above Statements can

alternately written as.

. CREATE TABLE <tablename>

and

39

INSERT INTO <tablename>SELECT <columnlist> FROM <tablename>

As(explainedin the section on Inserting records using SELECT Statement).

Copying the Structure.

The Structure of one table can be copied on to another table without the

records beingcopied. In order to do this, along with the SELECT statement, add a

WHERE clause which yields to any FALSE condition. The following example explain

this

CREATE TABLE employee 3 AS SELECT * FROM employee WHERE 1=2;

This statement creates a table called Employee3 whose structure is the same as

Employee but the records are not copied since WHERE clause evaluates to FALSE.

LESSON-4

Inserting records using SELECT statement.

40

Records can be selected and inserted from one table to another table using

INSERT! SELECT statement.

Syntax:

INSERT INTO <tablename> SELECT <columnlist> FROM <tablename>

[WHERE<conditions>],

Example

INSERT INTO employee3 SELECT * FROM employee WHERE

 salary>12000;-

The above examplecopies records from employee able to employee3 table where the

records meet the criteria specified in the WHERE clause.

Modifying data — Update Command

The UPDATE command is used to Modify one or a set of rows at a, time

UPDA statement consists Of 2 clauses—UPDATE clause followed lay a SET clause and

an optional 3
rd
clause - the WHERE clause. The WHERE clause specifies a condition,

which is optional.

UPDATE statement allows the user to specify the table name for which the rows are

to be Modified. The SET clause sits the values of one or more columns as specified b, the

use UPDATE statement Without a WHERE clause updates all the records in the table.

Syntax:

 UPDATE <tablename>

 SET<col1>=value<col2>=value,….

WHERE<condition>

Example :

Consider the table employee2, add a column called deptno to this table as shown below

41

ALTER TABLE employee 2 ADD deptno NUMBER;

Before the update command is issued on issuing.

SELECT * FRPM employee2;

This display will be:

EMPNO EMPNAME DEPT NO

1237 Kalai

1330 Saravanan

1247 Meena

1440 Diana

There are no values in the deptno column. Since INSERT is used to insert new records,

UPDATE performs the value updation, Now, consider the following UPDATE statement.

UPDATE employee2

SET depth =1 0:

This statement updates all the records of employee table with deptno as 10 and displays

number of records that were modified. Here the display will be,

4rows updated.

Example:

 UPDATE employee2

 SET deptno=20 WHERE empno>1003;

The deptno column is updated for all the records that satisfy the condition specified in the

WHERE clause. After this cornmand is issued, the select statement for this table would yield.

SELECT * FROM employee2;

ENO EMPNAME DEPT NO

1217 Kalai 10

1330 Saravanan 10

1247 Meena 10

1440 Diana 20

42

To update more than due column, separate the columns with a ‗,‘ as illustrated below. .

UPDATE employeel

SET salary = 6000, doj=.'09-SEP-2000' WHERE doj is NULL;

Here, the salary is Updated to 6000 and the doj is changed to 09-SEP-2000 for employees

whose the date of joining is NULL. After updation the selection from the table would yield.

EMPNO EMPNAME DOJ SALARY

1237 Kalai 10-MAR-2000 5000

1330 Saravanan 09-SEP-2000 6000

1247 Meena 10-JAN-2000 5000

1440 Diana 09-SEP-2000 6000

Removing Data-DELETE Statement

 Delete statement removes the rows from the table. The command has a DELETE from

clause and an optional WHERE clause. The DELETE FROM statement names the table on

which the deletion operation is to be performed and the WHERE clause specifies the condition.

Syntax:

DELETE FROM<tablename> [WHERE <condition>]

Example

DELETE FROM employee2 WHERE deptno=20;

his statement removes all the records from the employee 2 table for which thedeptno 20.

The following example removes all the records are from the table.

Example:

DELETE FROM employee 2;

Working with Transactions

Transaction means a logical unit of work that would make sense only on the

completionof all the operation as a whole. This means that, either all the operations in the

unit are completed fully or none of themare completed.- In Oracle, can be any Data

43

Manipulation Language Statements. SQL offers two commands to simulate real-life transactions

in the database. The commands are:

 COMMIT

 ROLLBACK

COMMIT completes the transactiondone by making changes permanently

to thedatabase and initiates a new transaction. ROLLBACK reverts back the changes made

and completes the transaction. The following example illustrates this in a better way :

INSERT INTO <tablename> Values(….);

INSERT INTO <tablename>Values (……..);

UPDATE<tablename> SET ……

COMMIT

Displays

Commit complete

All the changes are made permanently inthe database. The two Insert statements and an Update

statement effect the changes and thecommit completes the transaction.

Now, consider the following :

DELETE FROM <tablename>,

When this statement is issued, the records are deleted from thetable. But if this is done

accidentally, records can be retrieved immediately after the DELETE statement by issuing

the statement.

ROLL BACK;

This statement reverts back the changes made to the table and the records are not

deleted.

Note : All DDL, DCL, statements perform an Implicit Commit.

Temporary Markers

Now, assume that after the DELETE statement is one INSERT statement is issued as

44

given below:

 DELETE FROM <tablename> WHERE….

INSERT INTO <tablename> VALUES(……);

ROLLBACK;

Here both the INSERT and the DELETE operations are un-done. In order to avoid

this kind of situations SAVEPOINTs are used. SAVEPOINTS are temporary markers

that are used to divide a lengthy transaction into a smaller ones. They are used along with

ROLLBACK.

Syntax:

 SAVEPOINT<savepoint id>;

 Where savepoint_id is the name of the savepoint. Multiple savepoints can be

created within a transaction. Re-pharsing the previous example,

 DELETE FROM <tablename> WHERE<condition>;

 SAVEPOINT S1;

 INSERT INTO <tablename> VALUES<…);

 ROLLBACK To s1;

 ……..

 In this case, only the deleted statements are rolled back as savepoint has been used

after the Delete statements.

Note : SAVEPOINTS can be used with in transaction. After a transaction is completed,

the same save points cannot be used in the next transaction.

 DCL statements are dealt in the chapter on database objects.

 Differences between Delete and Truncate

The following table illustrates between Truncate and Delete.

Truncate Delete

45

Deletes all the records Can delete all the records or selective rows

alone

This is a DDL statement This is a DML statement

Commits Implicitly Explicit commit is required and

Hence ROLLBACK

Hence Not Possible can be used to rollback

SQL*PLUS Commands DESC Used to describe the structure of an object

SET PAGE SIZE N Sets the pagesize to n length

set feedback[ON/OFF] SQL displays the feedback for every

statement executed. By turning it off, the

feedback is not displayed on the screen.

SET HEADING[on/off] In query displays, the heading of the

column name is displayed.

By turning it off, the heading is not shown

on the screen. it canbe turned on again.

SET LINE SIZE x Set ‗x‘ number of lines to be displayed on

the screen

SET PAUSE on/off Pauses the display till the user

presses<Enter> key Executes the latest

command in the buffer.

Short Summary

 SQL is a Structured Query Language used for all RDBMS.

 SOL * Plus is a tool that is used to Work With and the commands

.
arc executed.

 SQL* Plus statements are not stored in the buffer.

 DDL — Data Definition Languages that defines the structureof an object.

 They are CREATE, ALTER, DROP, TRUNCATE, RENAME

Constraints :

46

Data security and Data Integrity are the most important factors in

deciding the success of a system. Constraints are a mechanism, used by Oracle to

restrict invalid data from being entered into the table and thereby maintain the

integrity of` the data. They are otherwise called a Business Rules. These

constraints can be broadly classified into 3 types:

 EntityIntegrity Constraints

 Domain Integrity Constraints

 Referential Integrity Constraint's

Entity Integrity Constraint

Entity Integrity constraints can be Classified as

 PRIMARY KEY

 UNIQUE KEY

Choosing a table‘s Primary Key

A primary key allows each row in a table to be uniquely identified and ensures

that hopduplicate rows exist and no null value are entered. Selecting a primary key

needs the following: guideline:

 Choose a column whose data values are unique

 Choose a column whose data values never change.

A primary key value is used to identify a row in the table. Therefore, primary

key values must not contain any data that is Used for any other purpose. Primary

key can contain one tit more columns of the same table. Together they form a

composite Primary Key.

Using UNIQUE Key Constraints

47

Unique Key constraint is used to prevent the duplication of key values

within the tows of a table. If values are entered into a column defined with a unique

key, repeating the Sallie data for that column is not possible but it can contain any

number of null values. According to Oracleone null is not equal to another null.

Domain Integrity Constraints

Domain Integrity constraints are based on the column values and any

deviations or violations: are prevented. The two types of Domain Integrity

Constraints are

 Not Null Constraints

 Check Constraints

Choosing NULL Constraint

By Default all columns can contain null values. NOT NULL constraints are

used for columnsthat absolutely require values at all times. NOT NULL

constraints are often combined with other types of constraints to further restrict the

values that can exist in specific columns of a table

Choosing Check Constraints.

Check Constraints are used to check whether the values in the table satisfy the

criteria ispecifie6 for that column. They contain conditions. The conditions

have the following limitations.

Conditions must be a Boolean expression that can be evaluated using the

values in the record being inserted or updated

Conditions must not contain sub-queries.

 Conditions cannot contain any SQL functions.

Conditions cannot contain pseudo columns.

Referential integrity Constraint

This constraint establishes the relationship between tables. A single or

combination of columns, which can be related to the other tables, is used to

48

perform this operation. Foreign key is used to establish the relationship. This kind of

relationship can be referred to as a Parent-Child relationship.

The table containing the referenced Key from wile-re other tables refer for

values is called the Parent table and the table containing the foreign key is

called the child table.

Adding Constraints

Constraints can be added in two different ways. There are

 Adding at the time of creating tables

 Adding after creating tables

The next section deals with the adding constraints at the time of creating

tables. Every constraints contains a name followed by the type of the constraint

Adding Entity Integrity Constraints

Both Primary Key and Unique Key constraints can be added at the time of

creation of tables. Let us consider creating a table called item master, which

contain item code, item_name and unit_price.

Example

Create table Item master (item _code number primary key,

Item name varchar2 (20) unique,

Unit Price number (9,2)

);

The table is created along with the constraints. If a constraint is given without

specifying thename of the constraint, Oracle by default assigns a name to the

constraint that is unique. The constraint starts with ‗SYS_C‘ followed by some

numbers.

After creation, records are inserted into the table as follows:

INSERT INTO item_master VALUES (I, 'Pencils', 2.50);

If the same command is executed again, it raises an error.

INSERT INTO item master VALUES (l, 'Pencils', 2.50);

49

*

ERROR at line 1.

ORA-00001: unique constraint (HEMA.SYS_C00769) violated

By looking at this error message, the user may not understand which value

is violated. in order to avoid this situation, a name has to be provided for every

constraint that is easy to read. Refining the above example

Create table Item_master (item_code number CONSTRAINT

pkit_code primary key.

 Item name varchar2(20) CONSTRAINT unque name unique,

Unit_Price number (9,2)

).

Naming the constraints always provide better readability.

Adding Domain Integrity Constraints

The user has to necessarily provide values for the columns containing

NOT NULL values. NOT NULL constraint is ideal in cases where the value

for the column must exist
-
Consider an organization that needs to store all the

employee information. In this case, the employee name column cannot be left

blank.

What is NULL?

NULL means some un-known value. NULL values can always be updated

later with some values. Remember it is not equal to Zero.

Example

CREATE TABLE employee master(empno NUMBER, empname

varchar2 (20)CONSTRAINT NN_ENAME NOT NULL);

While inserting records to this table,

INSERT INTO employee Master VALUES (1, null);

INSERT INTO employee_master VALUES (1, null)

ERROR at line I

 ORA01400 : cannot insert NULL into (―HEMA‖,

―EMPLOYEE_MASTER‖, EMPNAME‖)

50

In the above situation, since empname column has a constraint, it ensures that

sore values are entered and hence the error is raised,

Check constraints are used to perform the checking of condition used on

the value entered. The CHECK constraint is used to enforce business rules as shown

an the followingexample

Example .

CREATE TABLE employee_master (empno NUMBER, empname

VARCHAR2 (20) sex CHAR(1) CONSTRAINT chk_sex CHECK (SEX IN(‗M‘,

‗F‘,‘m‘.‘f‘));

 In the sex column, valid values are 'M‘, 'F", 'm, 'f. If values entered do

not match the condition, error message appears on the screen. As shown below:

INSERT INTO employee_masterr VALUES (2, 'Aditya', 'b');

INSERT INTO envloyee_master VALUES (2, 'Aditya', 'b');

*

ERROR. at line 1:

ORA - 02290 : Check constraint (HEMA.CHK_SEX) violated

Another example for using CHECK Constraint is given below. This example checks

for constraint on salary that an organization provides. The minimum salary that the

organization provides 1000 and the maximum is 7000. To check for this type of

constraint use,

Example

CREATE TABLE employee_ master (Empcode NUMBER, ernpname

VARCHAR 2(20), Salary NUMBER CONSTRAINT CHIK_SAL CHECK

(salary BETWEEN 1000 and 7000));

In the above example, BETWEEN operator is used to check if the salary

lies within the range of 1000 to 7000.

51

Relationships between Parent and Child tables

In order to establish a parent-child or master.-detail relationship; referential

integrity constraints are used. The relationship can be from one parent to one or more than

one child. The establishment of a Parent-Child relationship has some restrictions.

Parent table must be created before creating the child table.

The parent table column, which is referenced in the child table must contain

either Primary Key or Unique Key Constraints.

Consider a table called Customer which contains the details of the customers who.

have ordered for products and an Order table that maintains the information about the

orders placed. The structures of the tables look like :

CUST_MASTER

ORDER_MASTER

Here the Cust_master is the master table and order_master is the child table.

CREATE TABLE cust_master (ccode NUMBER (5) CONSTRAINT

Pk codePRIMARY KEY, name VARCHAR 2(40); Address VARCHAR2

(100))
.
,

CREATE TABLE order_master (ocode NUMBER(4),ccode

NUMBER (5) CONSTRAINT fk_code REFERENCES cust_master (ccode).

odate DATE, oval NUMBER);

CCODE NUMBER(5)

NAME VARCHAR2(40)

ADDRESS VARCHAR2(100)

OCODE NUMBER(4)

CCODE NUMBER(5)

ODATE DATE

OVAL NUMBER

52

In the above example, now that the master table must be created first and

Only then the child table is created. To establish the relationship. add

REFERENCES clause which refers to the master table.

If the value in the child table refers to a non-existing record in the parent table,

an error israised

Example

-
INSERT INTO cust_master VALUES (1. 'Arun', 'Chennai');

INSERT INTO cust_master VALUES (2, 'Ramesh', 'Bangalore);

Inserting records into child table.

INSERT INTO order_master VALUES (1, 1, '01-JAN-2000', 3000"

The record is inserted in to the child table since the value 1 or customer

code column refers to the parent record in Cust_master table

INSERT INTO order_master VALUES (2,4 '01-Jul-2000', 1000);

INSERT INTO order master VALUES (2,4 '01-3111-2000', 1000 * ERROR

at line I:

ORA - 02291: integrity constraint (HEMA.FK_CCODE) violated parent key

not found. This raises to an error since there is no reference record in the

master table tor Customer.

code 4.

The above - discussed types of constrains are called column level

constraints because they are defined along with the table definition. Another type of

constraint which is shown below is called the Table Level Constraint which is

shown below .

CREATE TABLE employee_master (Empcode NUMBER, embname

VARCHAR2(20); Salary NUMBER, Sex NUMBER,

CONSTRAINT pk empno PRIMARY KEY (empcode), CONSTRAINT

chk_sal CHECK (salary BETWEEN.1000 and 7000) CONSTRAINT

chk_sex CHECK (sex IN (‗M', 'F, 'm', T));

53

The table - level constraint for adding a referential integrity constraint is Shawn

below. CREAM TABLE order_master (ocode NUMBER (4), ccode

NUMBER (5), odate DATE, oval NUMBER,

CONSTRAINT fk_ccode FOREIGN KEY (ccode) REFERENCES

cust master (ccode));

While creating Table-level constraints for referential Integrity constraint,

FOREIGN KEY along with REFERENCES must be used.

Note: NOT NULL constraints cannot be given for Table-level constraints

Using ALTER Statement

Constraints can be created for existing tables using ALTER statement. The

following example illustrates this. Assume that the tables order master, employee

master, item master are created without constraints.

To add a primary key constraint,

Syntax:

ALTER TABLE<tablename>ADD [CONSTRAINT<constraint name>]

PRIMARY KEY (colname);

Example

ALTER TABLE employee master ADD CONSTRAINT pk_empno PRIMARY

KEY (empcode);

To, add a unique constraint,

Syntax:

ALTER TABLE <tablename> ADD [CONSTRAINT <constraint name)]

UNIQUE (colnarne);

Example

ALTER TABLE item_master ADD [CONSTRAINT unq_narne UNIQUE (item

name);

Check constraints are added using,

54

Syntax:

ALTER TABLE <tablename> ADD [CONSTRAINT .<constraint name>]

CHECK (colname<condition>);

Example

ALTER TABLE employee master ADD CONSTRAINT ck_sal CHECK

(salary BETWEEN 1000 AND 7000);

In order to add a referential integrity constraint use FOREIGN KEY and

REFERENCES keyword.

Syntax:

ALTER. TABLE <tablename> ADD [<CONSTRAINT <constraint name>]

FOREIGN KEY (colname)REFERENCES <mastertable>(colname);

Example:

ALTER TABLE order_master ADD CONSTRAINT fk_custcode FOREIGN

KEY (ccode) REFERNCES oust master (ccode);

Inserting a NOT NULL constraint using ALTER statement cannot be done

directly. Either MODIFY or CHECK is required to do this functionality.

Example

ALTER TABLE employee_rnaster MODIFY (empname varchar2 (20) not null)

Enabling Constraints

The following CREATE TABLE and ALTER TABLE statements both define and

enable integrity constraints:

CREATE TABLE emp (

Empno NUMBER (5) PRIMARY KEY,…);

ALTER TABLE emp 1

ADD PRIMARY KEY (empno);

The above two statements add the primary key constraint. The first addsthe

primary key constraint at the time of creation of the table. The next statement tries

to add the constraintalter the table is created. Here if the records are not available,

55

the constraint is added. If records are already present, the ALTER TABLE

statement will fail.

Disabling Constraints

The following CREATE TABLE and ALTER TABLE statements both define

and disable integrity constraints:

CREATE TABLE emp (

empno NUMBER(5) PRIMARY KEY DISABLE, . .);

ALTER TABLE emp

ADD PRIMARY KEY (empno) DISABLE

The above two statements describe the employee number to be primarykey but

initially it is disabled.

Enabling and Disabling Defined Integrity Constraints

Use
.
the ALTER TABLE command to

Enable a disabled constraint, Using the ENABLE clause

Disable an enabled constraint, using the DISABLE clause

Enabling Disabled Constraints

The following statements are examples of statements thatenable disabled

integrity constraints:

ALTER TABLE dept

ENABLE CONSTRAINT dname_ulcey;

ALTER TABLEdept

ENABLE PRIMARY KEY.

ENABLE UNIQUE (dname, loc);

The above 2 statements triesto enable the constraints:

AnALTERTABLE statement that attempts toenable an integrity

constraint falls When the rowsof the table violate the integrity constraint.

56

Disabling Enabled Constraints

The following statements are examples of statements that disable

enabled integrity constraints;

ALTERTABLE dept.

DISABLE CONSTRAINT dname_ukey;

TABLE dept

DISABLE PRIMARY KEY,

DISBLE UNIQUE (dname, loc);

The reversal of enable is disable. These two statements disables the

enabled constraints. Unlike ENABLE, this does not perform any checking while

disabling.

Dropping Integrity Constraints

Drop an integrity constraint if the rule that it enforces is no longer true or if the

constraint is no longer needed. Drop an integrity constraint using- the ALTER TABLE

command and the DROP clause.
-
For example the followingstatements drop integrity,

constraints:

ALTER TABLE dept

DROP UNIQUE (dnarne, LOC);

ALTER TABLE emp

DROP PRIMARY KEY,

DROP CONSTRAINT dept_fkey;

DROP TABLE emp CASCADE CONSTRAINTS;

The two Alter statements drops the unique; primacy keys. The third statement drops

the EMP table along with all the constraints.

This chapter gives an insight into the SQL operators, expressions in Oracle and all the

important functions that can be used in Oracle applications through SQL. This chapter also

deals with the Aggregate Functions that are used to group values and display as a singular

value. The usage of Group By and Having clause are also dealt with.

57

 Expressions

 Logical Operators

 Arithmetic Operators

 Comparison Operators

 Built-in Scalar Functions

 Numeric Functions

 Character Functions

 Date Functions

 Conversion Functions

 Aggregate Functions

Operators

Expressions are .a combination of formulae, constants and/or variables using

operators. They are used with operators to perform some action.

Operators

An operator is used to manipulate' individualdata items and return a result. These sets

of data items are calledoperands. Operators are represented by special characters or by

keywords. Forexample a "multiplication operator is represented by ‗*‘. The following

section of this chapter deals with various operators. The various kinds of operators are:

 Arithmetic

 Character

 Comparison/Relational

 Logical

 Set

Arithmetic Operators

 Arithmetic operators are used to perform operations on numeric values. The result of

the operation is a numeric value. Some operations can be used for calculating date arithmetic

values. The following table lists out the arithmetic operators.

58

Operator Purpose Example

+ Adds values Select salary + 1000 from employee

- Subtract values Select qoh-qty_ord from order_tab

* Multiplies the values Select salary, salary*. 01 from employee;

/ Divides the values Select marks/ 100 from student.

These operators can be given in conjunction with each other. In these situations,

multiple operators must be used according to the precedence rules within parentheses. If the

parentheses are not provided the order in which arithmetic operators take place changes.

Character Operators

 Characters operators are used in expressions to manipulate character strings.

Concatenation operator(||) is used to perform this operation.

Example:

 SELECT This is an ‗||‘ Example for ‗||‘ Concatenation operator‘

FROM DUAL:

 Displays.

 THIS IS AN EXAMPLE FOR CONCATENATION OPERATOR

 This is an Example for Concatenation operator.

 In this example, a system table called ‗DUAL‘ is used. This table contains one column.

 The result of concatenating three character strings is another character string. If all the

strings are of character datatype, the resultant also contains the character datatype and is

restricted to 255 characters.

Relational Operators:

 Certain operators are used to perform comparisons between values. The result of the

comparison or relational operator containing an expression will either be TRUE, FALSE or

unknown. The following are the list of relational operators.

59

Operator Purpose Example

= Equality test SELECT empno, salary FROM employee WHERE

deptno=10

!=,<> Un-equality test SELECT * FROM employee WHERE salary!=4000

> Greater SELECT *FROM employee than specified value WHERE

salary>2000

< Lesser than

specified value

SELECT * FROM students WHERE marks<40

>= Greater than or

equal to

SELECT * FROM product WHERE unit_price<=4

<= Lesser than or

equal to

SELECT * FROM product WHERE unit_price<=4

Between The value lies

within the range

UPDATE student SET grade=‘A‘ WHERE marks

BETWEEN 80 AND 90

IN Displays records

that satisfy the

list of values

SELECT * FROM employee WHERE deptno IN

(10,20,30) (Records where the department number is either

10 or 20 or 30 are displayed)

IS[NOT] Is used to check

for NULL

Values

SELECT * FROM employee WHERE empname

IS NULL The only

operator checks

NULL

That Value.

LIKE Matches a specified

pattern. To match a single

character, Use ‗_‘ and

for multiple Characters

use ‗%‘

SELECT empname FROM

employee WHERE ename

LIKE ‗_A%'

(Displays employee names

Where the second letter of the name is 'A')

60

Logical Operators

A Logical Operator is used to combine the results Of two or more conditions a

produce a single result based on them. Following are the set of Logical Operators.

 AND

 OR

 NOT

AND Operator

Returns TRUE if both the condition are TRUE. Otherwise, it returns FALSE

Example:

SELECT * FROM emp WHEREdeptno=10 AND sal>=4000;

This would display.

EMPNO ENAME JOBMGR HIREDATE SAL COMM DEPTNO

1383 Saran PRESIDENT 7-NOV-81 5000 10

This example checks for both the conditions and the records that match

both the conditions are alone displayed. All the records with deptno 10 and sal greater than

or equal to 4000 are displayed.

OR Operator

 Returns 'TRUE if either of the conditions evaluates to TRUE. Otherwise it returns

FALSE.

Example

SELECT * FROM emp WHERE deptno =10 OR deptno=20;

This display would be as, follows:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7839 KING PRESIDENT 17-NOV-81 5000 10

7782 CLARK MANAGER 7839 09-JUN-81 2450 10

7566 JONES MANAGER 7839 02-APR-81 2975 20

7902 FORD ANALYST 7566 03-DEC-81 3000 20

7369 SMITH CLERK 7902 17-DEC-80 800 20

61

7788 SCOTT ANALYST 7566 09-DEC-82 3000 20

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

The example displays records of all the Employees where the deptno is either 10 or 20.

NOT Operator

NOT operator returns TRUE if the enclosed condition evaluates to FALSE and FALSE if

the condition evaluates to TRUE.

Example

SELECT * FROM Student WHERE NOT (sname is NULL);

The example displays all the rows where the student name is NOT NULL.

SET operators

Set operators combine the results of two component queries into a single result

Queriescontaining set operators are caned Compound Queries.

NOTE: The SET operators can compare twosets of data only if the data are of

the same datatype.

The SET. operators are discussed below.

Union

Union operator is used to display all the records selected by either query. Consider

two tables X and Y with the same structure. A UNION operation performed on these two

tables yields records from both the tables without the values being repeated.

X Y

62

Data in the tables

Table X Table Y

SELECT* FROM X

UNION

SELECT * FROM Y

The output of this query looks like:

ITEMCODE NAME

1 Powers

2 Soaps

3 Creams

4 Pencils

4 pens

UNION ALL OPERATOR

UNION ALL operator works the same way as the UNION Operator . But the

difference is that this operator displays duplicate values also.

Example

 SELECT * FROM X

UNION ALL

SELECT * FROM Y

The output of this query looks like:

Dàzi

n Table

Item

code

Itemcode

Item code Name Item code Name

1 Poivders 2 Soaps

2 Soaps 3 Creamt

4 Pens 4 Pencils

Example

63

 ITEMCODE NAME

 1 Powders

2 Soaps

2 Soaps

3 creams

4 Pencils

4 Pens

INTERSECT operator

All the common distinct values are alone selected by the INTERSECT

operator

Example

SELECT * FROM x

1NTERSECT

S EL EC T * F R OM Y

This would return

 ITEMCO NAME

 3 Soaps

MINUS Operator

All the distinct rows selected by the first query but which are not m the

second query are listed

Y X

64

Example

SELECT * FROM x

MINUS

SELECT * FROM y

Records available in table X that are not available in table Y are displayed.

The output will look like

ITEMCODE NAME

1 Powders

4 pens

All set operators have equal precedence.If a SQL statement contains multiple

sets of operators. ORACLE evaluates them from left to right. If the order is to be

changed, parentheses

has to be used to explicitly specify another order. These querying tables can

contain .different structures i3ut the type of the data in the tables must match,

Functions

Functions are similar to an operator. A function manipulates. data items and

returns a result. Functions differ from operators in the format in which they appear

with arguments. Functions can be broadly classified into two types.

 Built - In Functions

 User — Defined Functions (dealt in later chapters) Built — in

functions are predefined functions that perform a specific task. Built —

in functions based on the values that they take to perform a task, can be

classified into two type's.

 Scalar or Single — Row Functions

65

 Aggregate or Group Functions

A single row function returns a single result row for every row-of a queried

table or view, while a group or aggregate. function works on a group of rows.. This-

section deals briefly with the various types of Single -, Row functions.

SCALAR FUNCTIONS

Scalar Functions can be classified as follows:

 Number Functions

 Character Functions

 Returning Number Values

 Returning Character Values

 Date Functions

 Conversion Functions

 Other Functions

Number Functions

Number functions accept numeric input return numeric values. This section

deals with numeric functions.

ABS

Syntax

ABS (n)

Returns the absolute value of n

Example

SELECT ABS (-15) " Absolute " FROM DUAL

Absolute

15

FLOOR Syntax

 Floor (n)

Returns the largest integer equal to or less than n.

Example

66

SELECT FLOOR (15.7) " FLOOR" FROM DUAL

Floor

15

CEIL Syntax

CEIL (n)

Returns me smallest integer greater than or equal to n

Example

SELECT CEIL (15.7) " Ceiling " FROM DUAL

Ceiling

16
,,,

EXP Syntax

Exp (n)

Returns e raised to the nth power ; e = 2.71828183….

Example

SELECT EXP (4) " e to the 4
th
 power " FROM DUAL

e to the 4
th
 power

54.59815

LN Syntax

 LN(n)

 Returns the natural logarithm of n, where n is greater than 0

 Example

 SELECT LN(95) ―Natural log or 95‖ FROM DUAL

 Natural log of 95

 4.5538769

67

LOG Syntax

LOG (m,n)

Returns the logarithm , base m, of n. The base m can be any positive

number other than 0 or 1 and n can be any p6sitive number.

Example

SELECT LOG (10,000) " Log base 10 of 100" FROM DUAL

Log base 10 of 100

2

MOD Syntax

 MOD (m,u)

Returns the remainder of m divided by n. Returns m if n is 0. Example

SELECT MOD (11,4) " Modulus " FROM DUAL

Modulus

3

POWER Syntax

 POWER (m,n)

Returns m raised to the nth power . The base m and-the exponent n can

be any numbers, but if m is negative , n must be an integer

Example

SELECT POWER (3,2) " Raised " FROM DUAL

Raised

9

ROUND Syntax

 ROUND (n{ ,m})

68

Returns n rounded to m places right of the decimal point; if m is

omitted , n is rounded to 0 places . m can be negative to round off

digits left of the decimal point . , m must be an integer.

Example

SELECT ROUND (15.193,1) " Round " FROM DUAL

Round

15.2

SIGN Syntax

SIGN (n)

If n < 0. the function returns -1; if n = 0, the function returns 0, if n>0

the function returns 1.

Example

SELECT SIGN (-15) " sign " FROM DUAL

Sign

-1

SQRT Syntax

SORT (n)

Returns square root of n. The value of n. cannot be negative SQRT,

returns a " real " result

Example

SELECT SORT (26) " Square root " FROM DUAL

Square root

5.0990195

TRUNC Syntax.

TRUNC (n{ ,m})

69

Returns n truncated to m 1 places; if in is omitted , n is truncated to 0

places . m can be negative to dill-mate (make zero) m digits left of the

decimal point

Example

SELECT TRUNC (15.79,1) " Truncate " FROM DUAL

Truncate

15.7,

SELECT TRUNC (15,79,-1) " Truncatee‖ FROM DUAL

 Truncate

 10

Character Functions

Character functions can return both numeric and character values . The

following &actions arc character functions that return numeric values.

ASCII

Syntax

ASCII(char)

Returns the decimal representation in the databasecharacter set of the first

byte of char . If the database character set is 7- bit ASCII , the function returns an

ASCII Value

Example

SELECT ASCII(‗Q‘) FROM DUAL

ASCII (‗Q')

81

70

INSTR

Syntax

INSTR (chat 1, char2, [,n[,m]])

Searches char I beginning with its nth.character for ruth occurrence of char 2 and

returns the position of the character in char 1 thatis thefirst character of this

occurrence. Ifnis negative. , ORACLE counts and searches backward from the end

of char 1. The value of m must be positive. The default values of both nand m are l,

meaning ORACLE begins searching at the fat character of char I for the first

occurrence of char2, The return value is. relative to the beginning of char 1,

regardless of the value of n, and is expressed in characters.lf the search is

unsuccessful (if char 2 does not appear m times after the nth character of char 1) the

return value is 0.

Examples

SELECT INSTR(‗CORPORATE FLOOR , OR' 3,2 " Instring " FROM

DUAL

Instring

14

SELECT INSTR ('CORPORATE FLOOR', 'OR', -3,2 "Reversed Instring" FROM

DUAL

Reversed Instring

INSTRB

Syntax

INSTRB (Char 1 , Char 2 [,n [,m }])

This is the same as INSTR , except that n and the return value are expressed

in bytes rather than in characters. For a single — byte database character set,

INSTRB is equivalent is

71

Example

SELECT INSTRB ('CORPORATE FLOOR ', ' OR‘, 5,2) " Instring in bytes‖

FROM DUAL

Instring in bytes

27

LENGTH

Syntax

LENGTH (Char).

Returns the length of characters in char . If Char hasdata type CHAR ,the

length includes all trailing blanks . If char is null , this function returns null.

Example

SELECT LENGTH (' RADIANT) " Length in characters‖ 'FROM DUAL

Length in characters

7

LENGTHB

Syntax

LENGTHB (char)

Return the length at char in bytes . If char is null, this function returns null,

For a single byte database character set, LENGTHB is equivalent to LENGTH

Example

Assume a double - byte database character set:

SELECT LENGTHB (' CANDIDE) " Length in bytes " FROM DUAL

Length in bytes

14

Character Functions Returning character values.

72

CHR

Syntax

CHR(n)

Returns the character which is the binary equivalent of n in the database

character set.

 Example

SELECT CHR(75) ―character‖ FROM DUAL

Character

K

CONCAT

Syntax

CONCAT (char 1, char 2)

Returns char1 concatenated with char 2. This Function is equivalent to the

concatenation (||)

Example

This example uses nesting to concatenate three character strings ;

SELECT CONCATE (CONCAT (ename , ' is a '). , job)." job " FROM

emp WHERE empno = 7900

Job

JAMES is a CLERK

INIT CAP

Syntax

 INITCAP(char)

73

Returns char, with the first letter of each word in uppercase and all other letters in

lowercase. Words are delimited by white spaces or characters that are not

alphanumeric.

Example

SELECT INITCAP(‗the soap‘) Capitalized ― FROM DUAL

Capitalized

The Soap

LPAD

Syntax

LPAD(char 1, n [,char 2]])

Returns char 1, Left- padded to length n with the sequence of characters in

chat,2; char 2 defaults to ", a single blank . If char 1 is longer than ii, this function

returns the portion of char 1 that fits in n.

The argument n is the total length or the return value as it is displayed on the

screen. In most character sets, this is also the number of characters in the return

value. How 'ever, ii C52111 multi- byte character sets, the display length of a

character string can differ from the number of characters in the string.

Example

SELECT LPAD (' Page 1‘, 15, * .‘)‖ LPAD example " FROM DUAL

LPAD example

***** Page 1

LTRIM

Syntax

LTRIM (char [, Set])

Removes characters that appear in set from the left of char , set defaults to ‗‘,

a single blank

74

Example

SELECT LTRIM (' xyxXxy LAST WORD ', 'xy ') " Left trim example "

FROM DUAL

Left trim example

X xy LAST WORD

REPLACE

Syntax

REPLACE (char , search _string [, replacernent_string])

Returns char with every occurrence of search_string replaced with

replacement_string. If search replacement_string is omitted or null, all occurrences

of search_string are removed . search string is null, char is returned. TES function

provides a superset of the functionality provided by the TRANSLATE function.

TRANSLATE provides single character , one to of): substitution . REPLACE

allows you to substitute one string for another as well as to real character strings.

Example

SELECT REPLACE (' JACK and JUE',‘J‘,'BL‘) " Changes " FROM DUAL

Changes

BLACK and BLUE

RPAD

Syntax

RPAD (char1, n [, char 27])

Returns char1, right — padded to- length n with char2, replicated as many

times as necessary. The default padding is ‗‘, a single blank . If char 1 is longer than

n, functionreturns the portion of char 1 that fits in n.

The argument is the total length of the return value as it is displayed on the

terminal street. In most character sets, this is also the number of characters in the

75

return value. However, in certain multi-byte character sets, the display length of a

character string can differ from the number of characters in the sting.

Example

SELECT RPAD (enname , 11, ' ab ') " RPAD example' FROM crop

WHERE enname =‘ TURNER '

 RPAD example

TURNER ababa

RTRIM

Syntax

RTRIM (char [, set])

Returns char, with all the right-most characters that appear in set tenanted; set

defaults to ‗ ‗, single blank . RTRIM works similar to LTRIM

Example

SELECT RTRIM (' TURNER yxXx',' xy') " Right trim example FROM

DUAL

Right trim example

TURNER yxX

SOUNDEX

Syntax

SOUNDEX (char)

Returns a character string containing the phonetic representation of char. This

function allows word that are spelled differently, but sound alike in English to be

compared.

Example

SELECT emname FROM emp WHERE SOUNDEX (ename=)

SOUNDEX(SMYTHE‘)

ENNAME

76

SMITH

SUBSTR

Syntax

SUBSTR (char,m [,n])

Returns a Portion of char , beginning at character m,n characters long . If mis

positive , ORACLE counts from the beginning of char to find the first character. If

m is negative ORACLE counts backwards from the end of char. The value of m

cannot be 0. If n is omitted, ORACLE returns all characters till the end of char. The

value of n cannot be less than 1.

Example

SELECT SUBSTR (' ABCDEFG ' , 3,2) ― substring " FROM DUAL

substring

CD

SELECT SUBSTR (' ABCDEFG ',-3,2) " substring " FROM DUAL.

substring

EF

SUBSTRB

Syntax

SUBSTRB (char,m[,n])

The same as SUBSTR , except that the arguments m and nexpressed in bytes,

rather than in characters. Fiat a Single - byte database character set, SUBSTRB

,equivalent to SUBSTR

Example

Assume a double - byte database character set:

SELECT SUBSTRB ('ABCDEFG' , 5,4) " Substring with bytes" FROM

DUAL

77

 Substring with bytes

CD

TRANSLATE

Syntax

TRANSLATE (char, from , to)

Returns char with all occurrences of from character replaced by its

corresponding to character . Characters in char that are not in from character are not

replaced. The argument from can contain more character is than to. In this case, the

extra characters at the end of from have no corresponding characters in to If these

extra characters appear in char, they are removed from the return value. We cannot

use empty string for to in order to remove all characters in from the return value .

ORACLE interprets the empty string as hull, and if this function ho's null argument ,

it returns null.

Example

This statement translates the given word called ' Miles' to ' Tiles'

SELECT TRANSLATE(‗Miles‘,‘M‘,‘T‘)TRANSLATE example‖

FROM DUAL

Translate example

Tiles

This statement returns a license number with the characters ,removed and

the digits remaining.

SELECT TRANSLATE (‗2 KRW 229', 0123456789

ABCDEFGHIJKLMNOPQRSFUVWXYZ ‗,‘' 0123456789‘)

―Translate example " FROM DUAL

78

Translate example

2229

UPPER

Syntax

UPPER (char)

Returnschar, with all letters uppercase . The return value has the same

datatype as the argument char

Example

SELECT UPPER (' Large') " Uppercase " FROM DUAL

uppercase

LARGE

LOWER

Syntax

LOWER (char)

Returns char, with all letters in lowercase. The return value has the same

datatype as the argument char (CHAR or VARCHR 2)

Example

SELECT LOWER (‗MR . SAMUEL HILLHOUSE ') "Lowercase "

FROM DUAL

Lowercase

mr
.
. samuel hillhouse

Date Functions

79

Date functions operate on values of the Date datatype . All Date functions

return a value of a DATE data type, except the MONTHS_BETWEEN function

that returns a number.

ADD_MONTHS

Syntax

ADD_MONTHS (d,n)

Return the date d plus n months, The argument n can be any integer. If d is

the last of the month or if the resulting month has fewer days than the day

component of d, thenif result is the last day of the resulting month. Otherwise, the

result has the same day component as d.

Example

SELECT ADD_MONTHS (sysdate, 1) ―Next month " FROM DUAL ; Next

month

04- JAN-01

LASTDAY

Syntax

LAST -DAY (d)

Returns the date of the last day of the month that contains d. This function is

determine how many days are left in the current month.

Example

SELECT SYSDATE, LAST_DAY(SYSDATE) " Last " , LAST DAY

(SYSDATE)- SYSDATE." Days Left ― FROM DUAL

SYSDATE Last Days Left

 04-DEC-00 31 – DEC-00 27

‗SELECT ADD_MONTHS (LAST DAY (sysdate) , 5) " Five months "

FROM dual ;

80

Five month

31- MAY -01

MONTHS_BETWEEN

Syntax

'MONTHS_BETWEEN (d1,d2)

Returns number of months between dates dl and d2 . If dl is later than d2, the

result positive; if d 1 is earlier than d2, the result is negative. If dl and d2 are either

the same days o the month or both last days of Months, the result is always an

integer, otherwise ORACLIT calculates the fractional portion of the result based

on a 31 - day month and also considers the difference in time components of dl

and d2.

EXAMPLE

SELECT MONTHS_BETWEEN (sysdate ,' 10 -JAN-00')"Months"

FROM DUAL;

Months

10.829904

NEXT_DAY

Syntax

NEXT_DAY (d,char)

Returns the date of the first weekday named by char that is later than the date

d. The argument char must be a day of the week in the session's date language. The

return value has the same hours, minutes,and seconds component as the argument d.

Example

SEIECT NEXT_DAY('06-DEC-00', TUESDAY") "NEXTDAY"

81

FROM DUAL;

NEXT DAY

12-DEC-00

ROUND

Syntax

ROUND(d [fmt])

Returns d rounded to the unit specified by the format model fmt. If fmt is

omitted d is rounded to the nearest day.

Example

SELECT ROUND(SYSDATE,'YEAR') "FIRST OF THE YEAR"

FROM DUAL

FIRST OF

01-JAN-01

TRUNC

Syntax

TRUNC (d, [fmt])

Returns d with the time portion of the day truncated to the unit specified by

the format model fmt. If we omit fmt, d is truncated to the nearest day.

Example

SELECT TRUNC (SYSDATE, 'MM') "First of the Month"

FROM DUAL

First of

01-DEC-00

82

Conversion Functions

Conversion Function converts a value from one datatype to another.

Generally, the form of the function names follows the convention datatype TO

datatype. The first datatype is el input datatype; the latter datatype is the output

datatype. This section lists the SQL.converse functions.

TO_CHAR, date conversion

Syntax

TO_CHAR(d[,fmt])

Converts d of DATE datatype- to value of VARCHAR2 ,datatype in the form

specified by the date format tint. If frit is not specified, d is converted to a

VARCHAR2 value in the default date format:

Example

SELECT TO _CHAR.(SYSDATE,'Month DD, YYYY') "New date format‖

FROM dual;

New date format

December 04,2000

TO_CHAR, number conversion

Syntax

TO _CHAR(n,[,fmt])

Converts n,or NUMBER datatype a Value ofVARCHAR2 datatype, using the

optional number format fmt. If no fmt is provided n is converted to a VARCHAR2

value exactly long enough to hold its significant digits.

Example

SELECT TO CHAR(17145, ‗99G999‘) ―Char‖ FROM DUAL Char

017,145

83

TO_DATE

Syntax

TO_DATE(Char[,fmt])

Converts char of CHAR or VARCHAR2datatype to a value of DATE datatype. The

fmt is a date format specifying the format of char. If the fmt is not specified, char,

must-be in the default date format. If fmt is ‗J‘ for Julian, then char must be a

number.

Do not use the TO DATE function With a DATE value for the char

argument. The returned DATE value can have a different Century value than the

original char, depending-on fat or the default date format.

Example

SELECT TO_DATE (‗September 25,2000,11:00 A.M‘ ‗Month dd, YYYY, HH:MI

A.M.‘) FROM DUAL

Output

TO_DATE(‗

25-SEP-00

The following Table is lists of all the functions:

FUNCTIONS NAME

Numeric functions ABS(), EXP(), FLOOR(), CEIL(),LN(),

LOG(),MOD (), POWER(), ROUND(), SIGN(),

SQRT () , T R U N C ()

Character functions

Returning numeric

values

ASCII (), INSTR (), INSTRB() , LENGTH()

Character functions

returning character values

CHR(), CONCATO, INITCAP(), LPAD(),LTRIM(

),REPLACE (), RPAD (), RTRIM () , SOUNDEX(),

SUBSTR (), SUBSTRB (), TRANSLATE(),

U P P E R () , L O W E R () ,

84

Date functions ADD_MONTH(),LAST DAY(),MONTHS_BETW

EEN(), NEXT_ DAY(),ROUND(), TRUNC(),

Date functions ADD_MONTHS(), LAST_DAY(),MONTHS_BETW

EEN(), NEXT DAY(),ROUND(), TRUNC(),

Conversion functions TO CHAR (), TO_DATE(), TO NUMBER(),

Other functions DUMP (), UID(), GREATEST(), LEAST(),

NVL(), UID, USER, SYSDATE

Aggregate Functions

Aggregate Functions are used to perform queries based on groups of rows

rather than on a single roe Also, group functions allow users to select summary

information‘s from groups of rows. Following are the list of grout, functions.

Function name Description

AVG() Computes the average of values

MAX () Finds the maximum of all values

MIN () Calculates the minimum value

COUNT() Counts the total number of values/records

SUM () Calculates the sum or total of all values

CREATION OF. SYNONYMS

Database objects

Database Objects are the schema objects. The various data base objects are listed

below:

 Tables

 Views

 Synonyms

 Sequences

 Indexes

 Cluster

85

Creating a simple view

Views are created using the Create command. The definition of the view

will containthe column names given in the query. Syntax for Creating a view.

Syntax:

CREATE OR REPLACE VIEW <viewname> AS< query>]

Example:

This createsa simple view with records selected from the Employee Table.

CREATE OR REPLACE VIEW ernpview AS SELECT ename, depno, sal FROM

emp;

This displays the feed back.

View created.

Dropping Views

Dropping Views can be done using the statement;

DROPVIEW <viewname>

Synonyms

A synonyms is a database .object, which is used
-
as an alias name for any object.

Thy maidadvantages of using Synonyms are:

Simplify SQL statements

Hide the real identity of an object

Use in database link

Synonyms can be public or private. Synonyms created as a Public Synonyms

areaccessible to all users, The public synonyms are owned by the user group PUBLIC and

can bedropped only by a DBA.

Syntax for creating a synonym name:

Syntax:

CREATE SYNONYM <synonymname>FOR<objectname>;

Example:

CREATE SYNONYM synemp FOR EMP

86

SELECT * FROM-synemp will display all the employee records in the emp

table.

Dropping Synonyms

Dropping of Synonyms can be done Using theDropcommand:

DROP SYNONYM synemp;

Sequences

Sequences are a set of database objects which can generate unique

or Sequential integer value. They are used for automatically generating primary

key or .unique key values. A sequence can be created in ascending or descending order.

Creating Sequences

CREATE SEQUENCE command is used to create sequence. The syntax for

creating Sequences are:

Syntax:

CREATE SEQUENCE <SEQUENCE NAME>

[<INCREMENT BY><VALUE>

<START WITH><VALUE>

<MIN VALUE><VALUE>

<MAX VALUE.><VALUE>

<CACITE><V AWE>

<CYCLE><VALUE>

where,

INCREMENT BY : specifies the interval between 2 integers. Can bea positive or

negative value but not zero.

STARTWITH : Specifies the first sequence number to be generated.

MINVALUE : Indicates the minimum Value in the sequence. It must be.

less than orequal to STARTWITH and less than MAXVALUE.

MAX VALUE : :Specifies the maximum value the sequence can generate.

87

CYCLE: Indicates that sequence continues to generate'values after

reachingmaximum values .

CACHE : Specifies how many values must be kept in memory forfaster

access.

For Example

CREATE.SEQUENCE s1

STARTWITH

1MINVALUE 1

INCREMENT BY 1

MAX VALUE 20

CYCLE

CACHE 15;

Displays,

Sequencecreated Index

When an index is present and will help the performance of an application request ,

Oracle automatically uses the index; otherwise; Oracle ignores the index

Oracle automatically updates an index to keep it in synch with its table.

. Although indexes can dramatically improve the performance of application

request Unwise to index every column in a table. Indexes are meaningful only for the key

columns application requests specifically use to find rows of interest. Furthermore,

index maintenance generates overhead-unnecessary indexes can actually slow down

your system rather that improve its performance.

Oracle 8 supports several different types of indexes to satisfy many types of

application requirements. The following sections explain more about the various types

of indexes that can create for a table's columns:

When an index
.
 is treated, Oracle fetches and sorts the columns to be indexed

and storesthe ROWID along with index value for row. Oracle loads the index from

88

the bottom They are logically andphysically independent of the data associated with the

tables.

How Indexes ate

When you Create an index, Oracle automatically allocates an index segment to

hold index‘s data in a table space

The tablespace of an index's segment is either the owner's default tablespace

or atablespace specifically named in the CREATE INDEX statement. You do not have

to place index in the same table space as its associated table.

for a unique - index; there isROWID per data value
.
 For a non-Unique index;

ROWED is included, in the key in sorted order, the index key and ROWID sort so non-

unique indexes. Key values containing nulls are not indexed, except for cluster indexes.

Two rowscan bothContainall nulls and not violate a unique index.

Unique indexes

Unique indexes. are indexes
.
 that are defined on columns, Which ensure that no

two can hold the same values... In other Words, it avoids duplication of values.

For example, Primary key and unique constraints are by default Creates unique

index.

Composite Indexes

Composite Indexes are indexes that get created, on more than one

column done based on the leading column. and, then on the subsequent column given

inside the index. They are also called as Concatenation Index.

Creating Indexes:

Indexes can created in the following ways:

Create index<indexname>ON<tablename>(<columnname>)

Example:

CREATE INDEX il ON emp (JOB)

Dropping indexes

Index can be dropped by using. Drop command

89

Syntax:

Drop

index<indexname>Example:

DROP INDEX 11

90

LESSON-5

Introduction to PL/SQL

Oracle's PL/SQL is a procedural language extension of SQL. It is the

standard programming language for Oracle RDBMS and follows the procedural

approach. It also provides conditional constructs like IF... THEN...,WHILE LOOP

Which are available in other languages like C, Pascal, COBOL,PL/SQL is very

powerful as it combines the flexibility available in SQL with the procedural

constructs. Oracle's PL/SQL adds a lot. of additional capabilities‘ to Oracle

programming in order to do validations, customization, include user interlaces and

handling errors effectively.

What is PL/SQL

PI/SQL is a block-structured language. The basic unit of PL/SQL is called a

BLOCK, which contains declarative statements, executable statements and error

handling statements. These blocks can be nested into one or more blocks.

Features of PL/SQL

 Allows us = to =bed one or more SQL statements together and execute as a

single SQL unit.

 Allows declaration of Variables.

 Allows usage of conditions! co acts

 Allows programm4 of error-handling using exceptions.

 Allows row-by--row processing of data using cursors

 Allows triggers to created arid fired

Advantages of PL/SQL

SQL Support

SQL has become the standard database language because it isflexible, powerful

and easy to learn. Since it is a non-procedural language, a user need not know 4owsthe

statements are processed1eut just needs to indicate the requirement.

91

allows the usage of all kinds of SQLdata manipulation, cursor control

and transaction control statements as well as me SQL functions, operators and pseudo

columns.

Better performance

Without PL/SQL Oracle Would process SQL statements one at a time. Each

SQL statement results in another Oracle call to Oracle and higher performance

overhead. Since PLSQL can contain SQL statements, all the SQL Statements can

be placed inside PL/SQLthereby reducing the time taken for communication between

the server and the application. This reduces network traffic and results in better

performance.

Support for Object Oriented Programming

Oracle implements the concept of object oriented programming. This allows

the cre6 of software components that are modular, maintainable and reusable.

Using encapsulationoperations with the data object types lets users to move

data-maintenance codes out of scripts and PLSQL blocks into methods.

Portability

Applications written in PL/SQL provides portability to the operating system

andplatformon which they runs. These applications is can run wherever Oracle can

ran.

Higher Productivity

PL/SQL adds functionality to Oracle's non procedural tools like Forms and

Reports.These tools can help to build applications using familiar procedural

Constructs. PLSQL does notdiffer in environments . It works the same way as it

works for other built-in tools. Also i scripts written using one tool can be used by

another tool.

Integration with oracle

Oracle and PLSQL are based on SQL statements. It supports all the SQL

Datatypes.These Datatypes integrate PUSQL with the Oracle Data dictionary.

92

PL/SQL Architecture

Before dismissing the architecture of PL/SQL block the basic unit of a

PLSQL whichis a block needs to be understood. A PLSQL block contains three

parts.

1. Declarative part

2. Executable part

3. Error handling part.

Declarative part

This is the first section of PL/SQL block. This section is used to declare

variables, constants, Every declaration or definition has a memory allocated in the

session's memory. Thekeyword DECLARE represents this part.

Syntax

DECLARE

Set of variables.

Executable part

This part contains all the SQL and PUSQL statements, which are used for

querying processing the data. BEGIN is used to mark the beginning of the

block and END endblock. There must be at least one executable statement within

a set of BEGIN and ENDstatements.

Error handling part

This part is called Exception. This part contains the error handling statements.

Oracle takes the control from the execution part of this part whenever any error is

raised in the program and checks for the exception.

Architecture of PL/SQL

PL/SQL runtime system is a technology, which has an engine that executes

PL/SQL blocks and subprograms. The engine can be installed in the Oracle server or

93

in an application development tool such as Forms and Reports. The engine can reside

in either of the twoenvironment

Oracle server

Oracle tools

These two environments are independent. PL/SQL might be available in

Oracle Server t unavailable in tools or the other way around The PL/SQL engine

processes the procedural Statements and sends the SQL statements to the SQL

statement Executor in the Oracle Server the following figure illustrates this:

PL/SQL Engine in the Oracle Server

Applications development tools that lack a local PL/SQL engine must rely on

oracle to process PL/SQL blocks and subprograms. When it contains the PL/SQL

engine, an oracle server can process PL/SQL blocks and subprograms as well as

single SQL statements. The Oracle server passes the blocks and subprograms to its

local PL/SQL engine. Basically there are 4 types of block

Anonymous Blocks

Named blocks

Stored Subprograms

Triggers.

94

Anonymous Blocks

Anonymous PL/SQL blocks can be embedded in an Oracle precomputer or

OC1 program. Atrun time, the program, lacking a local PL/SQL engine, sends these

blocks to the Oracle Server,wherethey are compiled and executed. Like wise,

interactive tools such as SQL* plus and Enterprise Managerlackign a local

PL/SQL engine, must send anonymous blocks to Oracle.

Named Blocks

Named blocks act in the same way as anonymous blocks except that they

can have names in the form of labels, which are valid only for that program.

Stored Sub programs

Subprograms can be compiled separately and stored permanently in an

Oracle databasenames in the form of labels, which are valid only for that program.

Stored Subprograms

Subprograms can be compiled separately and stored permanently in an

Oracle databaseready to be executed. A subprogram explicitly Created using an

Oracle tool is called a stored subprogram. Once compiled and stored in the data

dictionary, it is a scheme object, which can be referenced by any number of

applications connected to that database.

Subprograms defined within another subprogram or within a PL/SQL block are

called subprograms. They cannot be referenced by other applications and exist only

for the convenient the enclosing block.

Stored subprograms offer higher productivity, better performance,

memory savingsapplication integrity, and tighter security. For example, by

designing applications around a libra stored procedures and functions you can avoid

redundant coding and increase productivity.

Each stored subprogram has a name and is called or manipulated using the

name in On Pl./SQL structure and the associated rules are the same when a

95

subprogram is constructed using them. Procedures and functions are known as

subprograms. They can be called inside triggers also

Oracle has a concept by which all the related subprograms along with the

variables and an can be packaged for defining and deploying an application.

These are called packages.

Database Triggers

A database trigger is a stored subprogram associated with a table, you can

have On automatically fire the database trigger before or after an INSERT,

UPDATE or DELETE statement affects the table. One of the many uses of database

triggers is to audit data modifications.

A database trigger has a typical PL/SQL structure and can call

subprograms.

PL/SQL engine in Oracle Wools

When it contains the PL/SQL engine, an application development tool can

process blocks. The tool passes the blocks to its local Pl/SQL engine. The

engine executesprocedural statements at the application site and sends only SQL

statements to Oracle. Thus, most of the work is done at the application site, not at the

server site.

Furthermore, if the block contains no SQL statements,. The engine executes

the entire block at the application site. This is useful if the application cart benefit

from conditional and iterative control.

Frequently, Oracle Forms applications use SQL statements merely to test the

value of field entries or to do simple computations. By using PL/SQL instead, calls

to the Oracle Server can be avoided. Moreover, PL/SQL functions can be used to

manipulate field entries.

PL/SQL Delimeters

Before writing a simple PL/SQL block first we need to know the basic

delimeters

96

Delimeter Name Description

; Statement Terminator Each statement terminates

with a semicolon. := Assignment Operator Used to assign values to

(A:=10) variables

Label Indicator Used to defined the labels

inside a block

<<zz>>

____ Single Line Commenting a single line

comment

/*..*/ Multiline comment Many statements can be

placed inside this and they

will not be executed. .. Range indicator This is used in FOR Loops which

indicate the minimum range and

maximum range. &

:

Substitution variable

Bind or Session Variable

accessed

Used to substitute values to

variables.

Global variable can be

% Attribute Indicator They are used to assign the

datatype of a column to a variable.

 DBMS_OUTPUT

.PUT LINE

Used to print messages on the screen

Data types

Every constant and variable has a datatype that specifies a storage format and

valid range of values. A part from the datatypes that are available in SQL, PL/SQL

has its own set of datatypes that can be used in PL/SQL blocks.

NUMBER Datatypes

Numeric Datatypes are used to store numeric data and represent quantities,

calculations can be performed on this datatypes.

97

Binary Integer

Binary _integer datatype is used to store signed integers. Its magnituderanges

from 2147483647…2147483647. They are used to store array type ordata. This type

requires storage compared tonumber values.

Subtypes:

A basetype is the datatype from which a datatype is derived. A subtype

associates a base type with a constraint and so defines a subset of values. A

following are the list of sub types available.

• NATURAL.

• NATURALN

• POSITIVE

• POSITIVEN

• SIGNTYPE

Of these NATURAL and POSITIVE datatypes hold all positive numeric.

values. To prevent NULLS from being entered, NATURALN and POSITIVEN are

used. The SIGNTYPE restricts an ,integer variables to the value 1,-1 or 0 depending

on the type oil value entered.

Collection Datatypes

A collection is in ordered group of elements, all of the same type. Each

element has 7 unique subscript that determines the position of the collection. We

shall see more al Collections in the later chapters.

Boolean Datatypes

Logical values TRUE, FALSE, or NULL can be stored using the BOOLEAN

datatype. The datatype has no parameters.

Exception Datatype

This is a datatype that is used to define exception ell-or-handlers, which is

defined by the user. This is dealt in the chapter Exceptions.

Writing a simple program

98

The following example is used to display a message called 'WELCOME TO

THE WORLD OF PL/SQL'.

BEGIN

DBMS_OUTPUT.PUT_LINE("WELCOME TO THE WORLD OF

PL/SQL");

END;

Note that the program has no DECLARE part since the program does not use

any variable declaration. Declarative section is required only when variables are to

be used like the following example:

Example

DECLARE

x NUMBER;

BEGIN

x:=56;

DBMS_OUTPUT.PUT_LINE (X);

END;

The above example, displays the value 56 winch is stored in the variable x. In

order to accept the value at run-time the assignment operator has to be used.

Note: Although DBMS_OUTPUT.PUT_LINE is used to display messages,

the messages will not be displayed unless the environment setting called.SET

SERVEROUTPIJT is turned on. This is a SQL Plus statement .

Example

DECLARE

x NUMBER;

BEGIN

x :=&numb;

DBMS_OUTPUT.PUT_LINE (X);

END;

99

The assignment operator (&) is used to accept the value in the numb variable

and this variable assigned to x. It is similar to the continuous insert Statements ,

Using the SELECT statement inside PL/SQL

As discussed earlier, PL/SQL allows embedding of one or more SQL

statements inside the block. To display a condition based record, the select statement

requires an 'INTO' clause. A SELECT statement must hold an INTO clause where

the- output of the query is assigned to the variables given in the INTO clause. The

following example illustrates this

Example

DECLARE

s NUMBER;

BEGIN

SELECT sal INTO s FROM emp WHERE ernpno=7369;

DBMS_OUTPUT.PUT_LINE (‗the salary is ‗||s);

END;

The variables is assigned the salary of the employee' number 7369 and the

result would be displayed.

Declaring Variables

Variables can be declared in various ways. The two examples given above

have shown how to declare variables and assign values to them. Certain variables

can carry default Values which can be used to initialize values and certain other

variables can take constant values. Tb following example illustrates the usage of the

keywords DEFAULT and CONSTANT.

Using DEFAULT DECLARE

S NUMBER DEFAULT 10;

BEGIN

DBMS OUTPUT.PUTLINE (S);

END

100

In this example, the default value of S i.e. 10 is printed. The value in the

variable s ,can b altered. It can also be re-assigned with any other numerical value.

Using CONSTANT

Consider a situation where variables have to contain constant values; like for

example p1 has to be assigned 3.14

Example

DECLARE

Pi CONSTANT REAL :=3.14;

Area NUMBER ;

R NUMBER:=&R;

BEGIN

Area :=pi*r**2:

DBMS_OUPUT_LINE (' THE AREA OF CIRCLE WITH RADIUS.

'||r||‘IS‘||area);

in the above example, me variable pi is declared as, a constant variable whose

value cannot change anywhere inside me program. Reassigning me value for the

same variable leads to an error.

Using NOT NULL

Besides assigning an initial value, declarations can impose the NOT NULL

constraint, as the following example shows;

Example

DECLARE.

s VARCHAR2(10) NOT NULL :='RADIANT'

BEGIN

DBMS_OUTPUT.PUT_LINE (s);

 END

101

The-difference between using NOT NULL and DEFAULT is that default .

can be assigned to NULL but NOT NULL as the name suggests cannot holdNULL

values.

Control Structures

Often it is necessary to take alternative actions depending on circumstances.

The IF statement allows the execution of a sequence of statements conditionally.

The execution purely depends on the value of condition specified. The working is

similar to the IF conditions in other programming languages. There are three forms

of IF statements.

IF ….THEN

IF….THEN….ELSE

IF….THEN….ELSE IF

IF….THEN

This is the simplest form of the IF statement . This associates a condition with

a sequence of statements enclosed by the key words THEN and END IF . The

following example illustrates. this;

Syntax

IF condition THEN

Sequence_of_statements

End if;

The sequence of statements is executed only if the condition yields TRUE. If

the condition yields FALSE or NULL , the IF statement does nothing In either case,

control passes to The next statement following END IF. An example follows.

Example

DECLARE

s number;

BEGIN

S:=&a,

If s>=10 THEN

102

DBMS_OUTPUT.PUT_LINE(‗s greater than or equal to 10‘);

ENDIF

END;

The above example displays the value "S" 'greater than or equal to 10.onIy if

the variable s holds the Value 10 or greater than that;

IF - THEN - ELSE

The second form of IF statement adds the key worn ELSE followed by an

alternative sequence of statements. The general syntax is as follows:

IF condition THEN

Sequence_of_statements 1;

ELSE

Sequence of_ statements2;

ENDIF;

The sequence of statements in the ELSE clause is executedonly if the condition

yields FALSEor NULLS. Thus the ELSE clause ensures that a sequence of

statements is executed.

Modifying the above example;

Example

DECLARE

S number;

BEGIN

S:=&a;

IF S >=10 THEN

DBMS_OUTPUT.PUT_L1NE('S GREATER THAN OR EQUAL 10‘)

ELSE

DBMS OUTPUT.PUT_LINE (‗S IS LESSER THAN 10')

ENDIF ;

END;

103

IF –THEN-ELSEIF

The third form of IF Statement uses the key word ELSIF (not ELSIF) to introduce

additionalconditions. Multiple IF conditions are clubbed and written using the

ELSIF clause.

Syntax:

IF CONDITION l THEN

SEQUENCE OF STATEMENTS 1;

ELSIF CONDITION 2 THEN

SEQUENCE _ OF_STATEMENTS2;

ELSE

SEQUENCE _ OF _ STATEMENTS3;

ENDIF;

If the first condition yields FALSE or NULL . the ELSIF clause tests another

condition.An IF statement can have any number of ELSIF clause; the final

ELSE clause is optional.Conditions are evaluated one by one from top to bottom.

If any condition yields TRUE,itsassociated sequence of statements is executed and

control passes to the next statementfollowing ENDIF. If all the conditions yield

FALSE or NULL, the sequence in the ELSE clause is executed. The following

example finds the greatest or two numbersusing IF-THEN-ELSIF

Example:

DECLARE

A NUMBER :=&A

B NUMBER := &B

BEGIN

IF A>B THEN

DBMS_OUTPUT.PUT_LINE (‗THE GREATEST NUMBER IS‘ || A);

ELSIF B > A THEN

104

DBMS_OUTPUT.PUT_LINE (` THE GREATEST NUMBER IS‘|| B);

ELSE

DBMS OUTPUT.PUT_LINE (` BOTH ARE EQUAL `);

ENDIF;

END;

The above example accepts two numbers and the conditions are checked and

depending onthe condition that evaluates to TRUE, the message under that

condition is displayed .

When possible, use the ELSIF clause instead of nested IF Statements: This

will make the woe easier to read and understand. Compare the following the IF

statements;

IF conditional 1 THEN

.Statement 1

ELSE

IF condition2 THEN

Statement2;

ELSE

IF condition 3 THIN

Statement 3;

END IF;

END IF;

END IF;

IF. condition1 THEN

statement 1;

ELSIF condition2 THEN

statement 2;

ELSIF condition3 THEN:

statement3;

END IF;

These statements are logically equivalent. While the statement on the left

obscures the flow of logic, the statement on the right reveals it.

Iterative control

105

Iterative statements are a set of statements that are performed a number

of times depending on the value in the LOOP statement. There are three basic

forms of LOOP statements.

 LOOP

 WHILE LOOP

 FOR LOOP

LOOP

The simplest formof LOOP statement is the basic (or infinite)loop, which

encloses a sequence of staternen6 between the keywords LOOP and ENDLOOP.

The syntax is as follows.

Syntax

LOOP

Sequence _ of_ statements,

End LOOP

With each Iteration of the loop, the sequence of the statements is executed

and the control resumes at the top of the loop. The following example shows the

execution of the LOO statement.

Example 7.9

DECLARE

a NUMBER :=10;

BEGIN

LOOP

DBMS OUTPUT.PUT_LINE (a);

END LOOP;

END.

The output leads to an error. Because the number of time the loop must be

106

executed is not specified and it does for an infinite loop. In circler to terminate

the loop some form of termination statement is required. The EXIT statement is

used to perform the operation

Example

DECLARE

A NUMBER :=& A;

BEGIN

LOOP

DBMS OUTPUT.PUT_LINE(A);

a :=a+1;

IF a >20 TIIEN

EXIT;

End if :

END LOOP;

END.

Till the value crosses 20, the loop is executed and once the value for the

variable reach 20, the loop is terminated. using the EXIT statement. This EXIT

statement can be further simplified by the usage of EXIT_WHEN statement.

EXIT WHEN

The EXIT_WHEN statement allows a loop to complete conditionally.

When the EXIT statement is encountered, the condition in the WHEN clause is

evaluated. It the conditions yields TRUE, the loop completes andcontrol passes

to the net statement after the loop. The syntax follows;

BEGIN

EXIT WHEN <CONDITION>

END;

107

The following example shows the usage of EXIT WHEN statement. This

example is a modification of the previous example with the EXIT statement

Example

DECLARE

a NUMBER:=&A

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE (a);

a:=a+1;

EXIT WHENa>20;

END LOOP;

END;

WHILE LOOP

The while loop statement associates a condition with a sequence of

Statements enclosed by the keywords LOOP and ENDLOOP. The syntax of the

WHILE LOOP

Syntax

WHILE condition loop

 Sequence_of_ statements;

END LOOP

Before each iteration of the loop, the condition is evaluated. If the

condition yields TRUE, the sequence of statements is executed and the control at

thetop of the loop. If the. condition yields FALSE or NULL, the loop is bypassed

and control passesto the next statement after end loop: The following example

displays the total of the first 20 numbers using the WHILE loop statement.

108

Example

DECLARE

X integer :=1;

Y integer :=0;

BEGIN

WHILE x<=20

LOOP

Y:=Y+x;

X:=X+1;

END LOOP;

DBMS_ OUTPUT.PUT_LINE (Y);

END;

In the above example, the loop is executed only when the while condition

is satisfied.

FOR LOOP

While the number of iterations for a WHILE loop isunknown untilthe

loopcompletes the number of iterations for a FOR loop is known before the loop

is entered. FOR loops iterate over a specified range of integers. The range is part

of an iteration scheme, which is enclosed within the keywords FOR and LOOP.

The syntax follows;

FOR counter IN[RBVERSE] lower_bound..higher_bound LOOP

Sequence_of_statements;

END LOOP;

The range is evaluated when the FOR loop is first entered and is never re-

evaluated the next example shows the sequence at statements is executed once for

109

each integer in the range. After the each iteration, the loop counter is

incremented. The following example displays the reversal of a string.

Example:

DECLARE

s VARCHAR2 (20):='&s‘;

s1 VARCHAR2 (20);

BEGIN

FOR I IN 1…LENGTH (S)

LOOP

s1:=s1||SUBSTR(s,-I,1);

END LOOP

DBMS_OUTPUT.PUT_LINE(s1);

END:

In the above example a string is accepted. The number of iterations is fixed

by the length of the strings. Each character is the string is extracted and assigned

to the variable SI. The variable is called a counter variable and it cannot be

assigned or declared.

Example

DECLARE

s VARCHAR2 (20):='&s‘;

s1 VARCHAR2 (20);

BEGIN

FOR I IN 1…LENGTH (S)

LOOP

s1:=s1||SUBSTR(s,-I,1);

 DBMS_OUTPUT.PUT_LINE(‗The counter value is‘ ||i).

110

END LOOP

DBMS_OUTPUT.PUT_LINE(s1);

END:

This displays the value ofthe counter variable.

By default iteration proceeds upward from the lower bound to the higher

bound.However, the keyword REVERSE is used, iteration proceeds downward

from the higher bound to the lower bound, as the example given below shows.

After each iteration, the loop counter is decremented.

FOR i IN 1…3 LOOP________assign the values 1,2,3 to i.

Sequence_of statements;_________executes three times

END LOOP;

Nevertheless, the range bounds are to be written in ascending (not

descending)order.Inside a FOR loop, the loop counter can be referenced like a

constant. So, the loop counter can

appear in expressions but it cannot be assigned values, at the following

example shows;

FOR ctr IN 1 .. 10 LOOP

……….

IF NOT finished THEN

INSERT INTO VALUES(ctr,....);______ legal

Factor := ctr * 2;______legal

ELSE

Ctr := 10;_____illegal

ENDIF;

END LOOP;

ITERATION SCHEMES

111

The bounds of a loop range can be literals, variables, or expressions, but

they. must evaluate to integers. For example, the following iteration schemes are

legal.

j IN-5..5

k IN REVERSE first...last

Step IN 0...TRUNC(high/low)*2

Code IN ASCII(`A').... ASCII(‗J‘)

Loop labels

Like PL/SQL blocks loop can be labeled. The label, an undeclared

identifier enclosed by double angle brackets, must appear at the beginning of the

bop statement as follows

<<label_name>>

LOOP

Sequence_of_statements

END LOOP.

Optionally the label name can also appear at the end of the loop statement,

as the following example shows;

<<my_ loop>>

LOOP

END LOOP my _ loop

When labeled loops are nested ending label names can be used to improve

readability With either form of EXIT statements, not only the current loop but

also any enclosing loops a, be completed. This can be done by labeling the

enclosing loop that is to be completed. Th. label can then be used in an EXIT

statement as follows,

< outer>>

112

LOOP

……..

LOOP

………

Exit outer WHEN ……Exit both loops

End loop;

………

End loop outer;

Every enclosing loon up to and including the labeled loop is exited:

EXCEPTION MANAGEMENT:

Exception

An exception is an identifier in PL/SQL raised during the execution of a

block that terminates its main body of actions. A block always terminates when

PL/SQL raises an exception, but you specify an exception handler to perform

final actions.

Two methods for raising an exceptions

1. An oracle error occurs and the associated exception is raised

automatically. For example, if the error ORA -04103 occurs with no rows are

retrieved from the database in a select statement, then PL/SQLraises the

exception NO_ DATA_ FOUND.

2. You raise an exception explicitly by issuing the RAISE statement

within the block. The exception being raised may be either user defined or

predefined.

Handling exceptions

113

ERRORS

 Runtime errors arise from design faults, mistakes, hardware

failures, and many other sources. Although these errors are not anticipated ,these

errors can be handled meaningfully. To capture the errors raised,exceptions are

used. In PL/SQL warnings or error condition is called Exceptions.When an error

occurs, an exception is raised. That is normal execution is stopped and control

transferred to the exception – handling part of the PL/SQL block. They are

designed for runtime rather than compile time errors. They are handled in the

Exception section of the PL/SQL block. Errors can be classified as

 Runtime Errors

 Compile-time Errors

 Exceptions can be broadly classified into

 Pre- defined Exceptions

 User defined Exceptions

 Un defined Exceptions

Pre defined exceptions

 Pre-defined exceptions are exceptions that are already defined by

Oracle. The following list gives the set of predefined exception.

Advantages of exceptions

114

 Using exceptions for error handling has several advantages.

Without exceptions handling, everytime a command is issued, execution errors

must be checked , as follows,

BEGIN

SELECT....

____check for "no data found " error

SELECT......

____check for "no data found" error

SELECT.....

_____check for "no data found" error

 Error processing is not clearly separated from normal processing; nor is it

robust. If you neglect to code a check, the error goes undetected and is likely

to cause other, seemingly unrelated errors.

With exceptions, errors can be conveniently handled with out the need to code

multiple checks as follows;

BEGIN

SELECT....

SELECT....

SELECT…

….

Exception

WHEN NO_DATA _FOUND THEN- catches all "no data found" errors.

Exception improve, readability by letting error handling routines to be isolated

Error recovery algorithms do not obscure the primary algorithm. Exceptions also

improve reliability. You need not worry about checking for an error at every

point it might occur. Just add an exception handler to your PL/SQL block. If the

exception is ever raised in that block (or any sub block) , you can be sure it will

be handled.

The following examples illustrates the usage of pre denned exceptions.

115

Zero - Divide

When a number is dividedby zero, this exception is raised. The following

example briefs this exceptions.

Example

DECLARE

X NUMBER :=& X;

V NUMBER := 8iY;

BEGIN

DBMS_OUTPUT.PUT LINE (' RESULT IS‘ || XY):

END:

In this example, two values are accepted for x and y respectively. If I both

contains non zero values the result is printed. If 'y' contains zero , it leads to the

exception which is displayed as:

ORA — 01476: divisor is equal to zero

In order to handle the exception, exception clause must contain the Exception

Zen Divide Refining the above example,

DECLARE

X NUMBER :=& X

Y NUMBER :=& Y

BEGIN

DBMS_OUTPUT.PUT_LINE ("RESULT IS " || XY);

EXCEPTION

WHEN ZERO DIVIDE THEN

DBMS_OUTPUT.PUT_LINE ("VALUE IS DIVIDED BY ZERO");

END;

The second example illustrates the usage of NO_DATA_FOUND

Example

DECLARE

MYENAME VARCHAR2 (20);

116

BEGIN

SELECT ENAME INTO MYENAME FROM EMP WHERE EMPNO=&X;

 DBMS_OUTPUT.PUT_LINE ('THE NAME OF THE EMPLOYEE IS‘

 || MYENAME)

EXCEPTION

WHEN NO _DATA _FOUND THEN('NO RECORD FOUND')

END;

/

A SELECT statement returns not more than one row. It a SELECT statement

is made to return more than one record, a cursor is required. The following

example shows this:

Example

DECLARE

MYSAL NUMBER;

SELECT SAL INTO MYSAL FROM BM? WHERE DEPTN0=10
-
;

DBMS _ OUTPUT. PUT LINE (MYSAL);

END;

This would display.

ORA - 01422 exact fetch returns more than requested number of rows.

Raises the pre-defined exception too many rows. To avoid this handle the

exception in the Exception clause.

.

DECLARE

MYSAL NUMBER;

117

BEGIN

SELECT SAL INTO MYSAL FROMEMP WHERE

DBMS_OUTPUT.PUT_LINE(MYSAL);

EXCEPTION

WHEN TOO_MANY_ROWS THEN

DEMS_OUTPUT.PUT_LINE ('Use cursors')

END;

The given above exampleillustratedthe usage of handling pre-defined

exceptions m the exception section of any PL/SQL block. Likewise, all the other

vie-defined exceptions can be handled in the following fashion.

Using Others

To handle any kind of an exception use OTHERS. This is a handler that

handles any exception. The example follows

Unhandled Exceptions

Remember, if it cannot find a handler for a raised exception, PUSQL

returns an unhandled exception error to the host environment which determines the

outcome. For example,

in the Oracle Precompiles environment ,any database changes made by

a failed SQL statement Statement orPI/SQL blocks are rolled back.

Unhandled exceptions can also affect subprograms. If you exit a

subprogram successfully, PI/SQL assigns values to OUT parameters.

However, if you exit with an un handled exception, PL/SQL does not assign

values to OUT parameters. Also, if a stored sub program falls with an

unhandled exception, PL/SQL does not roll back database work done by the

sub program

Unhandled exceptions cab be avoided by coding an OTHERS handler at

the top most level of every PUSQL block and sub program

How exceptions propagate

118

When an exception is raised, if PL/SQL cannot find a handler for it in

the current block or subprogram, the exception propagates. That is, the

exception reproduces itselfin successive enclosing blocks until a handler is

found or there are no more blocks to search. In the later Cast, PUSQL returns

an unhandled exceptions error to the host environment.

Cursor management

Why cursors?

When a query inside a PL/SQL block returns more than one record or

one set ofdata. Oracle requires a place holder to place the values.

Thevariables provided in the INTO clause can contain only one value at a

time. In order to process Multiple records, CURSORS are used.

Types of Cursors

PL/SQL implicitly declares a cursor for all SQL data manipulation.

Statements , including queries that return only one row. Cursorscal be if 2

types:

 Implicit cursors

 Explicit cursors

Implicit cursors

Whenever a SQL statement is issued theDatabase server opens an area

of memory in which the command is parsed and executed. This area is called

a cursor. When the executable par of PL/SQL block issues a SQL command.

PL/SQL creates an implicit cursor, which has the identifier SQL, PL/SQL

manages this cursor.

Explicit cursor:

SELECT statements that occurs within PLISQL blocks are known as

embedded. They must return one row and may only return one row. To get

119

around this a SELECT Statement is defined as a cursor (an area or memory),

me query Is executed did the returned rows are manipulated with in the

cursors. Explicit cursors can be of two types

 Static cursors

 Dynamic cursors

Static cursors

Static cursors are a type of cursors where the SELECT .statement is

given at compile bra itself Thai is, the table from which the data are coming

and the records that are going to be selected are predetermined at compile

time itself. The definition of the cursor is done in the declarative part.

Dynamic cursors

Dynamic cursors as the; name suggests, are a set of cursors where the

records tram the tables are selected at runtime rather than at compile time.

Dynamic cursors are dealt in the latter part of this chapter.

Each cursor has four attribute;

% ROW COUNT Returns the number of rows processed by a SQL

Statements.

%FOUND Holds TRUE if al least one row is processed.

% NOT FOUND Holds TRUE if no rows are processed.

% ISOPEN Holds TRUE if a cursor is open or FALSE if cursor

has not been opened or has been closed. They are

used only in connection with,explicit cursor.

%ROW COUNT:

The% ROW COUNT Attribute as used to return the number of

recordsfetched. This is in accordance with the number of FETCHES done.

% FOUND

This attribute contains TRUE if the FETCH statement fetches any

records .The attribute will hold FALSE if there are no records to be fetched

120

% NOT FOUND

it is the logical opposite of % FOUND . If records are fetched, the

% NOT FOUND is FALSE and TRUE,if there are no more records to be

processed. Using this we can terminate from the loop.

%ISOPEN

This attribute checks for the status of if the status of the cursor is open

or not. If the cursor is opened , it holds TRUE and FALSE, if the cursor is not

opened.

The tabular structure illustrates this better.

Attribute Is TRUE Is FALSE

% ISOPEN If the cursor is opened if the cursor is not

opened

% FOUND When records are fetched

using FETCH statement

If there are no more

records to be fetched

and processed

%NOT FOUND When there are no records

available to be fetched

When records are

fetched by the FETCH

statement

%ROW COUNT Hold the number of records -----

Explicit Cursors

Explicit cursor manipulation is performed usingFour commands

 DECLARE

 OETCH PEN

 FETCH

 CLOSE

Declaring a cursor

121

Cursor declaration defines the name and structure of the cursor together

with the SELECT statement that will populate the cursor with data. The query is

validated but notexecuted. The keyword CURSOR is used to declare a cursor.

The syntax to declare a cursor is:

Syntax

CURSOR <cursor name > IS <query

Example

CURSOR CI is SELECT ename, job FROM emp

Opening a cursor

After declaring the cursor, it needs to be opened for manipulation in the

executable section. Opening a cursor means that the query is executed and the

rows are populated in the cursor.

Note that the declaration of the cursor does not mean that the query is

executed and records are selected. Only opening a cursor performs this operation.

Syntax

OPEN <cursor name>

Example

OPEN c1;

FETCHING RECORDS FROM THE CURSOR

FETCH statement loads the row addressed by me cursor pointer into

variables moves the cursor pointer on to me next row ready for the next fetch.

After each fetch, the curse pointer moves to the next row m the result set.

Syntax

FETCH < cursorname>INT0<variable list>

Example

FETCH C1 INTO x,

122

Here assume the variables, x and y are already declared. For each column

that is used in the SELECT list a corresponding variable in the INTO list Must

appear. Other wise it leads to an error.

Closing a cursor

CLOSE statement releases the data within the cursor and closes it. The

cursor can be reopened to refresh its data.

Using Table type

Tabletype is a collection datatype that stores the table values and it can be accessed. It

consists of various collection methods.

Syntax

Type < typename> is table of<datatype> index by binary integer.

Here type name indicates the name of the type and the datatypeis the type a can hold

and values by binary_integer specifies that it can hold a dynamic range of values

CURSOR FOR UPDATE

Very often, the processing done in a fetch loop modifies the rows that have been

retrieved by the cursor. PL/SQL provides a convenient syntax for doing this. This

method consists of two parts.

The FOR UPDATE clause in the cursor declaration

The WHERE CURRENT OF clausein an UPDATE or DELETE statement

FOR UPDATE

The FOR UPDATE clause identifies the rows that will be updated or deleted and

then locks the rows in the result set.

The syntaxis

 SELECT…FROM…FOR UPDATE[OF column_reference]

 [NOW AIT]

123

Where column_reference is a column in the table against which the query is

performed. A list of columns can also be used.

Cursor Variables

All of the explicitcursor examples we have seen so far are examples of static

cursors. The cursor is associated with one SQL statement and this statement is

determined when the compilation of PL/SQL takes place.

A cursor variable, on the other hand, can be associated with different statements

atrun time. Cursor variables are analogous to PL/SQL variables, which can hold

different Values at run time. Static cursors are analogous to PLJSQL constants, since

they can only be associated with one run-timequery.

In order to usea cursor variable, it must first be declared. Storage for it must then

be allocated at run time, since a cursor variable is a REF type. This means that, it is a

reference type to a cursor. From this point opening; fetching of records and closing are

similar to those of Static Cursors

Declaring a cursor variable

SUBPROGRAMS

Subprograms are named PL/SQL blocks that can: take parameters and be

invoked.PL/SQL has two types of sub programs called procedures and functions.

Generally, a procedure is used to perform an action and a function to compute a value

Like unnamed or anonymous PL/SQL blocks, subprograms have a declarative

part , a executable part, and an optional exception —handling part. The declarative

part containsdeclarations of types, cursors, constants, variables exceptions and

nested soup
-
rowans' flip items are local and cease to exist when you exit the

.subprogram The executable part coda statements, that:: assign values, control

execution and manipulate Oracle data. The exceptionhandling, part contains exception

handlers, which deal with exceptions raised during , execution.

124

Advantages of subprograms

Subprograms provide extensibility, that is, they let you tailor the PL/SQL

language to suityour needs. Subprograms also provide nodularity that is, they let you

break a program downto manageable, well-defined logic modules. This supports

top-down design and the stepwiserefinement approach to problem solving

Also subprograms promote reusability and maintainability. Once validated,

a subprogram can be used with confidence in any number or applications. Further more,

only thesubprogram is affected if us definition changes. This simplifies maintenance

and enhancement

 Finally, subprograms and abstractionthe mental separation from particulars.To use

subprograms you must know what they do, not how they work. Therefore, you can

design applications from the top down without worrying about implementation details

Dummysubprograms - (stubs) allow you, to deter the definitions of procedures and functions

until you testand debug the main program.

Procedures to Parameters

A procedure is a subprogram that performs a specific action. The syntax for

creating procedure :

.CREATE OR REPLACE PROCEDURE

<Procedure name>[parameter list] As

PL/SQL statements

AProcedure contains two parts

 Specifications

 Body

The specification contains the procedure name, the parameter and the body contains the

executable statements.

Parameters

125

Parameters are the values that are passed to the subprogram for computing values

or performing specific actions. In-turn the subprograms can return some values which can be

the output of the subprogram. Based on this, the parameters are classified as

 ACTUAL

 FORMAL

ACTUAL PARAMETERS

They are the variables defined in the parameter listor a subprogram call.

FORMAL PARAIVIETERS

Theythe variables given while declaring subprograms,

Parameter modes

 Parameter modes define the behavior of the formal parameters. There

are three parameter modes

 IN

 OUT

 INOUT

IN MODE

IN mode is used to read values from the subprogram. It is a read only

variable where reading alone is done and no assignment is performed. Consider

the following example that illustrates the usage of the IN mode.

Example

CREATE OR REPLACE PROCEDURE DISP_ENAME

(ENO IN NUMBER)IS MNAME VARCHAR2 (20);

BEGIN

SELECT ENAME INTO MNAME FROM EMP WHERE EMPNO

= ENO;

126

DBMS_OUTPUT.PUTLINE (`THE NAME IS‘|| MNAME);

END;

The procedures gets created. In order to execute the procedure, the

statement EXEC is used as shown below:

EXEC disp_ename(7902)

Displays ,

EXEC DISP _ ENAME (7902);

The name is FORD

PL/SQL procedure successfully completed.

This procedures uses the IN mode and displays the name of the employee.

OUT MODE

The OUT parameter is used to return values to the program. Rather it is a

write - Only variable. The value can be assigned to this variable. Consider a

situation where the employee name and the salary are to be displayed. The

following example shows the usage of the OUT parameter.

CREATE OR REPLACE PROCEDURE DISP_SAL (ENO IN NUMBER,

SALARY OUT NUMBER) AS

MNAME VARCHAR2(20);

BEGIN

SELECT SAL, ENAME INTO SALARY, MNAME FROM EMP

WHERE EMPNO=ENO;

DBMS OUTPUT.PUT LINE (`THE EMPLOYEE NAME IS‘||

MNAME);

Execution can not be done like the execution of the previous example. Since

there isa OUT parameter, a place holder, must be provided for the out variable

value to be assigned. The two steps in execution of this program at SQL prompt

are:

127

First declare a session variable or local variable using the keyword VAR as shown

below:

VAR <variable name><data type>

Next, executethe procedure with the arguments specified and replace the out

parameter with the variable defined

EXEC <procedurename> (value ,;<variable name>);

Since, thevariable is a session variable, session variables can be called using

colon delimeter(Refer PL / SQL delimeters)

Finally, print the value placed on the variable using PRINT statement

PRINT <variable name>

The example and the output isshown below:

VAR n NUMBER

EXEC disp_sal(7902,:n);

The employee name is FORD

PL /SQL procedure successfully completed.

PRINT n

N

3000

Alternatively this procedure can be executed inside a PL/SQL block as shown

below:

DECLARE

MSAL NUMBER;

MENONUMBER:=&N;

BEGIN

128

DISP SAL(MENO, MSAL);

DBMS_OUTPUT.PUT_LINE (‗THE SALARY IS ' || MSAL);

END;

When this block gets executed, it displays

Entervalue for n:7902

old 3 Meno number := &n

new 3Meno number :=7902;

the employee name is FORD

the salary is 3000

PI/SQL procedure successfully completed.

IN OUT Mode

The INOUT parameter is used to pass initial values to the subprogram. It is a

read- write variable and can be used for both reading and writing values. Inside the

sub program the IN out parameter acts like an un-initialized variable. An example

for displaying the product name and the price is shown below.

CREATE OR REPLACE PROCEDURE disp_prod

(no IN OUT NUMBER, name OUT VARCHAR2) AS

BEGIN

SELECT pname, ucSt INTO name, no FROM product WHERE pcode=no;

END;

The output of the above program is,

Procedure created.

The procedure, which contains an IN OUT parameter, cannot be executed

as SQL prompt. A subprogram that contains an IN OUT parameter must be

129

executed only inside a PL/ SQL block. The below program shows how to execute

an IN OUT parameter.

Example :

DECLARE.

Name VARCHAR 2(20)

Var_x NUMBER; = & X;

BEGIN

DISP_PROD (VAR_X, NAME);

DBMS_OUTPUT.PUT LINE (`name is‘||name||‘rate is‘||var_x);

END;

The Program accepts the number and the rate is assigned to the same variable

andthe name of the product is assigned to the variable name.

The output would look like ;

Enter value for x : 102

old 3 : Var x NUMBER:=&X;

new 3: Var x NUMBER:=102;

name is storewell rate is 10000

Passing Default Values

As the example below shows, you can initiailize IN parameters to default

values. That way, different numbers of actual parameters can be passed to a

subprogram, accepting or overriding the default values.

PROCEDURE create_dcpt

new_dname CHAR DEFAULT 'TEMP',

new_loc CHAR DEFAULT 'TEMP') IS

BEGIN

INSERT INTO dept

VALUES (deptno_seq.NEXTVAL, new-dname, new_loc);

130

If an actual parameter is not passed, the default value at its

corresponding formal parameter is used. Consider the following calls to. Create -

dept:

Exec create_dept;

Exec create_dept (‗MARKETING'),

Exec create_dept ('MARKETING‘,‘NEW YORK‘)

The first call passes no actual parameters, so both default values are used..

The Second call passes one actual parameter, so the default value for new_loc is

used. The third call passestwo actual parameters, so neither default value is used.

Forward Declarations

PL /SQL requires a declaration an identifier before using it. For example, the

following declaration of procedure award bonus is illegal because

award_bonuscalls procedure calc_rating, which is not yet declared when the call

is made.

DECLARE

PROCEDURE award bonus (....) IS

BEGIN

calc_rating(…); - - undeclared identifier

…

END
:

PROCEDURE calc_rating (...) IS

BEGIN

….

END;

131

In this case, this problem can be solved easily by placing procedure

calc_rating beforeprocedure award_bonus. However, the easy solution does not

always work. For example, suppose the procedures are mutually recursive (call

each other) or they are defined in alphabetical order.

PL/SQL solves this problem by providing a special subprogram declaration

called a forward declaration. You can use forward declarations to

define subprograms in logical or alphabetical order .

define mutually recursive sub programs

group sub programs in a package

A forward declaration consists of a subprogram specification .terminated by a

semicolon. the following example, the forward declaration advises PL/SQL that

the body of procedure calc_rating can be found later in the block:

DECLARE

PROCEDURE calc_rating (...); -- forward declaration

….

/* Define subprograms in alphabetical order*/

PROCEDURE award bonus (...) IS

BEGIN

calc _rating(....);

….

END;

PROCEDURE calc_rating (....) IS

BEGIN

….

END;

Although the formal parameter list appears in the forward declaration. it must

also appear the subprogram body. The sub program body can be placed anywhere

after the forward declaration, butthey must appear in the sameprogram unit.

Functions of Notations

132

A function is a program that computes a value. Functions and procedures are

structured e, except that functions have a RETURN clause. Functions are created

by using the following syntax:

CREATE OR REPLACE FUNCTIONS

<FUNCTIONNAME>[parameter list] RETURN datatype IS

PL/SQL Statements

Return <value/variable>;

END;

Procedures Vs Functions

 The following table listsout the differences between procedures and:

functions.

PROCEDURES FUNCTIONS

Used to perform a specific task

Does not return values

(can be explicitly returned using OUT

mode)

Used to Calculate Values

Must return 1 value using Return

Statement (can be made to return more

than 1 value using OUT mode)

Viewing Procedures and Functions :

Procedures and Functions are viewed using the Data dictionary Views:

SELECT * FROM USER SOURCE;

Dropping Subprograms

Subprograms when not required can be dropped using Drop command. Syntax :

DROP FUNCTION <function name>;

DROP PROCEDURE <procedure name>;

